
We show the world it is possible

European Green Corridor Network

Overview of Maritime Activity in the Baltic Region

Sources - Ports: World Port Index; Vessel Density - World Bank and IMF; Maritime Activity - Project Partners; Boundaries: EU NUTS; Basemap: OSM 2022 Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

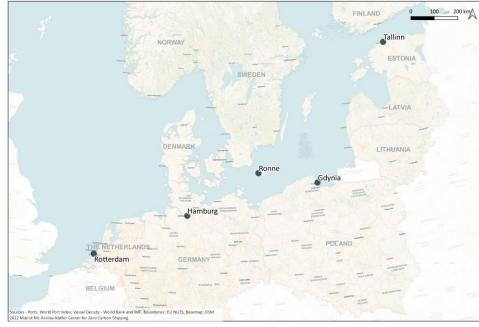
Agenda

– 10:00 Welcome

by Lars Nordahl Lemvigh (CEO Port of Roenne)

- Project presentation

- Vessels segments operating in the region, fuel demand, and emissions
- Alternative fuel infrastructure in the region, at ports, producers, suppliers – existing and under development
- Port Project Partners Activities in region and Readiness
- Cost of transition
- Project recommendations
- Additional in formation on: Stakeholder interviews and feedback, and Funding options
- 12:00 Lunch


– 13:00 Afternoon session

- Panel sessions
 - Fuel producers and bunkering providers panel
 - Pitch by Panelists (CiP, LiquidWind, Skovgaard Energy)
 - Off-takers panel
 - Pitch by Panelists (Furetank, VTTI)
- 15:00 Introduction to Workshop and break-out sessions
- 15:05 Coffee break
- 15:30 Workshop
 - Workshop: Progressing from here!
 - (Moderators: Cees/Roman, Maja/Olga, Hele-Mai/Natalja, Linda/Johan, Michal/Martin)
 - Report from moderator of workshops
- Summary of the day and closing remarks (17:30)
- 18:30 Networking dinner

Establishing Green Corridors in N. Europe and the Baltic Sea

Vision – "To establish Green Corridors¹ in Northern Europe and the Baltic Sea by mid decade"

Baltic Project Partner Ports

1. Defined by the Getting to Zero Coalition's "The Next Wave" report: Green Corridor Report are shipping route between two major port hubs (including intermediary stopovers) on which the technological, economic, and regulatory feasibility of the operation of zero-emissions ships is catalyzed through public and private actions

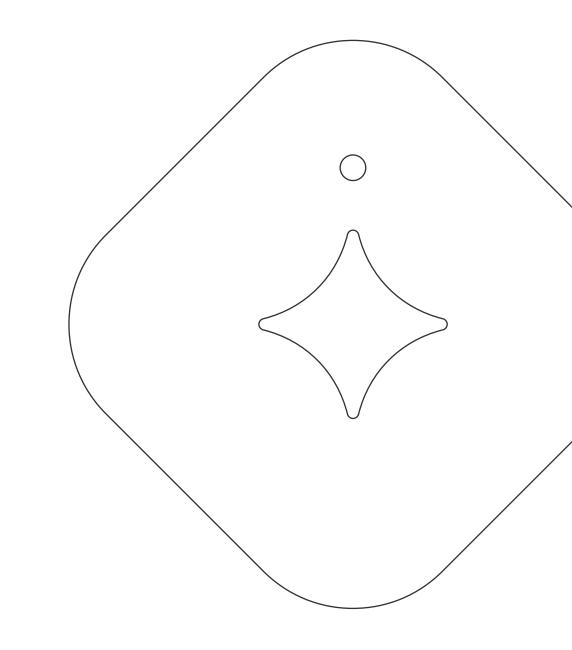
Proposed overall objectives:

- Establish infrastructure and value chains for alternative fuels at each participating port by mid-decade, so that calling vessels can bunker these fuels
- Operationalize the full shipping supply chain with vessels sailing on alternative fuels between each participating port by mid-decade thereby realizing the Green Corridors.
- Accelerate development of these Green Corridor routes to full commercial scale implementation by 2030.

Objectives for Phase 1 (Dec-21 to June-22):

 Identify and establish the foundation for the first Green Corridors between participating ports, first mover vessel segments, operators, and their bunkering needs in combination with a coherent selection of an alternative fuel supply option

Dissemination for Phase 1 (Aug-22 to Sept-22):



PORT OF 🚯 TALLINN

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

What is a Green Corridor

What defines a Green Shipping Corridor?

1 1 Single point	-point corridors establish zero-emission shipping routes around a particular
	on, i.e., a port hub allowing round-trip bunkering
	to-point corridors are single-route green corridors between 2 ports Typically, niche segments or based around a commodity transportation route
	ork green corridors establish routes between 3 or more ports where vessels ail on alternative fuels
	Corridor types — — Network corridor — — Point-to-point corridor — — Single-point corridor

2

Port C

Port B

Port **A**

Definitions

1. Green Corridors are shipping route between two major port hubs (including intermediary stopovers) on which the technological, economic, and regulatory feasibility of the operation of zero-emissions ships is catalyzed through public and private actions

2. Green Corridors are focused action / intention by a group of companies / countries / institutes, related to the entire Zero Emission Shipping Value Chain with the aim to deliver a commercial product/offer throughout the value chain

Page 5

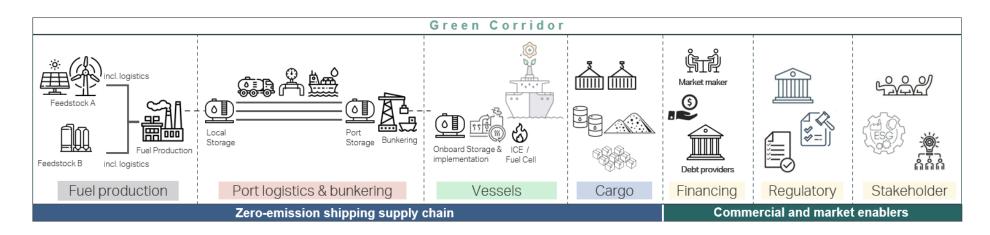
What is a Green Shipping Corridor?

The Getting to Zero Coalition suggested that four critical building blocks need to be in place to establish a green corridor

1. Cross-value-chain collaboration:

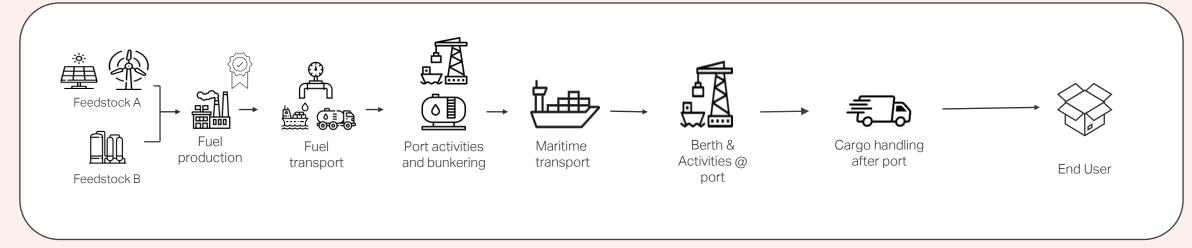
A green corridor requires stakeholders that are committed to decarbonization and are willing to explore new forms of cross-value-chain collaboration to enable zero-emission shipping from both the demand and supply side!

2. A viable fuel pathway:


Availability of zero-emission fuels, along with bunkering infrastructure to service zero-emission vessels, are essential factors!

3. Customer demand:

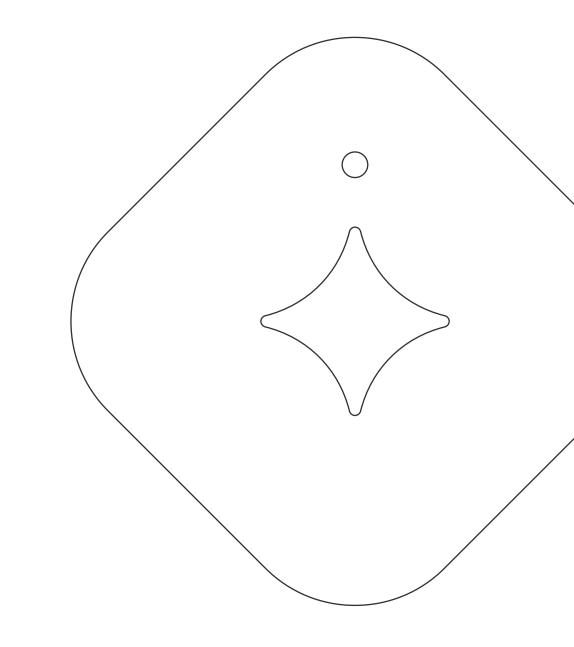
Conditions need to be in place to mobilize demand for green shipping and to scale zero-emission shipping on the corridor!


4. Policy and regulation:

Policy incentives and regulations will be necessary to narrow the cost gap and expedite safety measures!

What is a Green Shipping Corridor?

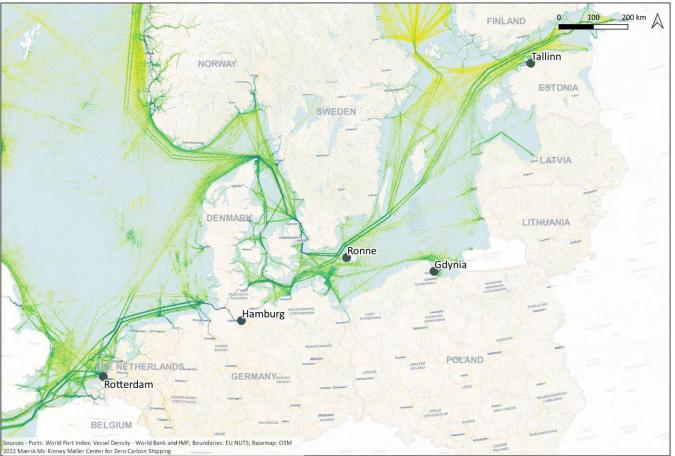
- What has decarbonization potential?

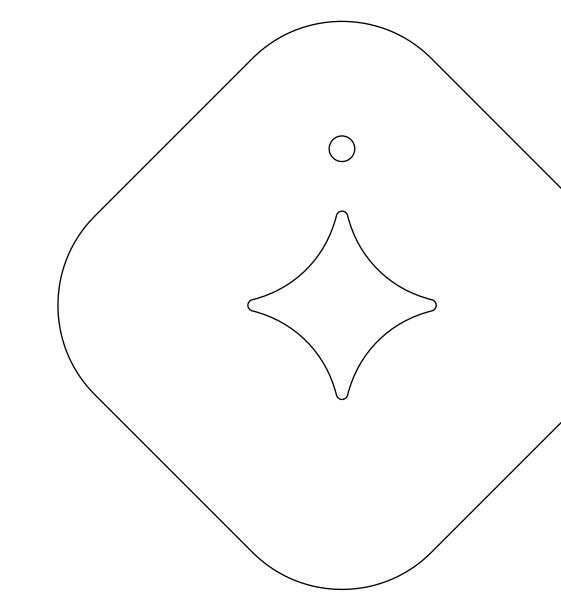


- Where do we see the highest potential for decarbonization?

Pre-feasibility study

Pre-feasibility analysis by:

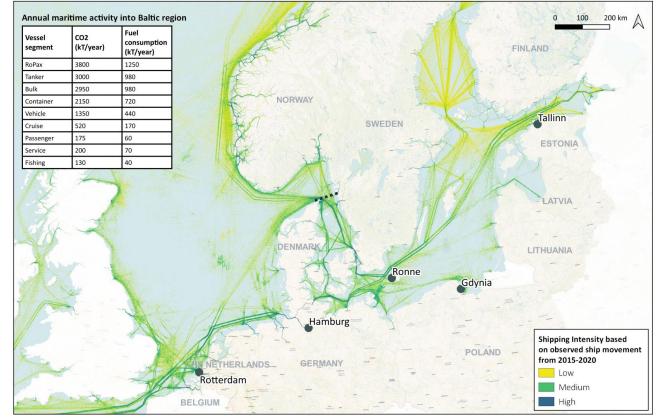



Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Baltic Project Partner Ports

- ightarrow Pre-feasibility has addressed:
 - Trade routes
 - Vessel segments
 - Fuel options and choice
 - Port case:
 - Adaption of new fuels
 - Stakeholder rounds
 - Funding options

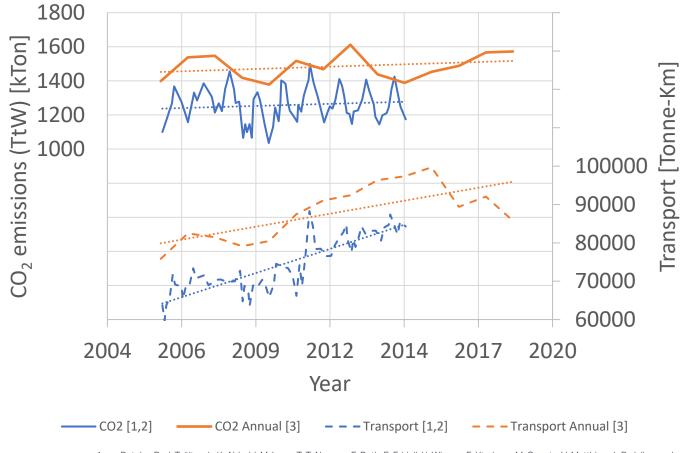
Trade routes & Vessel segments


Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Trade routes & Vessel segments

*There are about 2000 ships in the Baltic marine area at any given moment and about 3500–5500 ships navigate through the Baltic Sea per month*¹

- More than 50% of the ships are general cargo ships
- 20% of the ships are tankers carrying over 200 million tons of oil
- 20% of the ships are bulkers packed with forestry, metal or steel products and mostly stay within the region
- 15% of the ships are container lines handling around 8 million TEU through the ten largest ports
- 35% are ferries, vehicle carriers, and passenger ships operating about 50 million passengers – which differs from the global fleet composition!
- Remaining segments are: Cruise ships, Service ships, and Fishing vessels


Overview of Maritime Activity in the Baltic Region

Sources - Ports: World Port Index; Vessel Density - World Bank and IMF; Maritime Activity - Project Partners; Boundaries: EU NUTS; Basemap: OSM 2022 Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

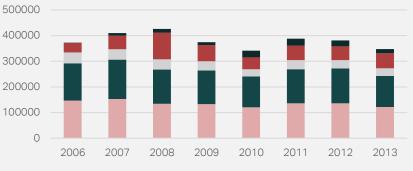
Activity levels consistent for decades Measured in terms of CO₂-emissions and Transport work

Emissions from Shipping in the Baltic Sea, 2006-2014/19 (Reproduction from 1, 2 and 3)

Boteler, B., J. Tröltzsch, K. Abhold, M. Lago, T. T. Nguyen, E. Roth, E. Fridell, H. Winnes, E. Ytreberg, M. Quante, V. Matthias, J.-P. Jalkanen, L. Johansson, J. Piotrow, U. Kowalczyk, K. Vahter & U. Raudsepp (2015). SHEBA - Drivers for the shipping sector. SHEBA Project Report

 Parsmo, R., B. Boteler, J. Troeltzsch, U. Kowalczyk, J. Piotrowicz, J.-P. Jalkanen, L. Johansson, V. Matthias & E. Ytreberg (2016, under review). SHEBA - Sustainable Shipping and Environment of the Baltic Sea Region. SHEBA Project Report

3. Emissions from Baltic Sea shipping in 2006-2019, Jukka-Pekka Jalkanen,, Maritime Working Group, Onlinel, 5 - 8 October 2020,



Baltic Sea countries (including Russia) controls around 7000 cargo ships with gross tonnage > 1,000, ie.:

- 13% of the world fleet
- 35% of the EU-controlled fleet¹

The EU-controlled fleet (including Norway) has expanded by more than 70% in the Baltic Sea region in the period 2005 to 2014 (both in GT and DWT) 1

However, the total number of vessels decreased by 31% for the same period indicating a trend towards larger ship sizes, especially for the cargo transport²

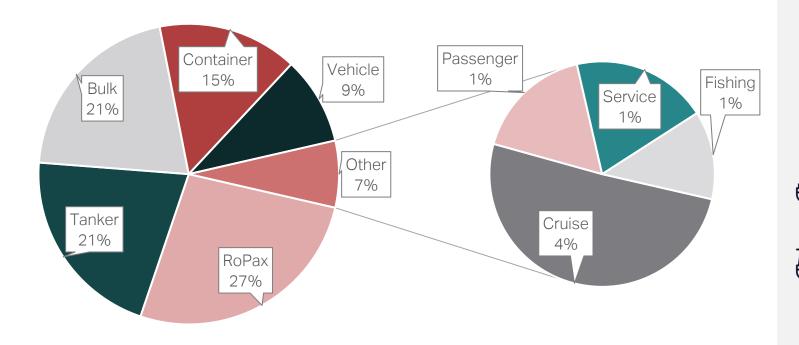
■ Cargo ■ Tanker ■ Passenger ■ Other ■ Unknown

Emissions and fuel consumption in the region by segment

Summary of fuel consumption and CO_2 emissions (TtW) for the Baltic Sea fleet during 2018¹

		dan .				-				
	RoPax	Tanker	Cargo	Container	Vehicle	Cruise	Passenger	Service	Fishing	Total
Ships (#)	218	1.911	4.011	607	259	94	470	401	801	8.772
Fuel Main (kT/yr)	1.053	628	706	495	391	138	29	23	22	3.485
Fuel Aux (kT/yr)	182	341	261	273	63	35	21	33	22	1.231
Total fuel (kT/yr)	1.235	969	967	768	454	173	50	56	44	4.716
CO ₂ (kT/yr)	3.754	2.941	2.941	2.337	1.379	526	150	170	134	14.332
Summary of fuel consumption and CO ₂ emissions for the Baltic Sea fleet during 2019 ²										
	RoPax	Tanker	Cargo	Container	Vehicle	Cruise	Passenger	Service	Fishing	Total
Ships (#)	211	1.981	4.035	492	264	87	465	388	784	8.772
Fuel Main (kT/yr)	1.070	649	720	420	374	130	46	36	21	3.466
Fuel Aux (kT/yr)	181	363	274	247	62	39	25	41	21	1.253

Total fuel (kT/yr) 1.251 1.012 667 436 169 71 77 42 4.719 994 CO_2 (kT/yr) 3.804 3.074 3.021 2.027 1.325 515 217 233 130 14.346


Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

1. Emissions from Baltic Sea shipping in 2006-2018, Jukka-Pekka Jalkanen, Lasse Johansson, Maritime Working Group, Lisbon, Portugal, 23-26 September 2019

2. Emissions from Baltic Sea shipping in 2006-2019, Jukka-Pekka Jalkanen, Maritime Working Group, Onlinel, 5 - 8 October 2020

$\rm CO_2$ -Emissions in the region by segment

Summary of CO₂ emissions (kTon/Year) for the Baltic Sea fleet 2018 - 2019

 Johansson, Jalkanen, and Kukkonen, Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution Atmospheric Environment, Vol.167, 2017, Pages 403-415,

\rightarrow

RoPax

Is the highest emitting segment in the region responsible for more than one quarter of the regional maritime associated emissions. This differs from global shipping, where the primary impact is from cargo vessels¹

Cargo

The combined cargo ship segments account for more than half of the emissions in the region, these include:

ظرمتم Tankers

These are primarily responsible for carrying oil into and through the region

Bulk

Mainly packed with break bulk (e.g. forestry, metal or steel products). Most of these ships stay inside the Baltic Sea and Northern Europe, and export rates among Baltic States are generally high

🖵 Container

The ten largest ports handles around 8 million TEU containers, and has experienced an approximate 3% annual growth

Ferry line operations in the region

Ferries offer an excellent option to build up infrastructure for decarbonized shipping and green corridors in the region

In the region more than 25 ferry lines (RoPax, Passenger and Vehicle carriers) operate a network of point to point routes, and are responsible for more than 5 mTons/Year $\rm CO_2$

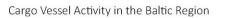
- Ferries carry more than 50 million passengers
- Ferries are essential for inter-regional cargo transport typically in trucks
- Selected ferries are subsidised to ensure domestic connectives
- More than 35% of maritime CO₂ emissions in the region can be eliminated by decarbonizing ferries

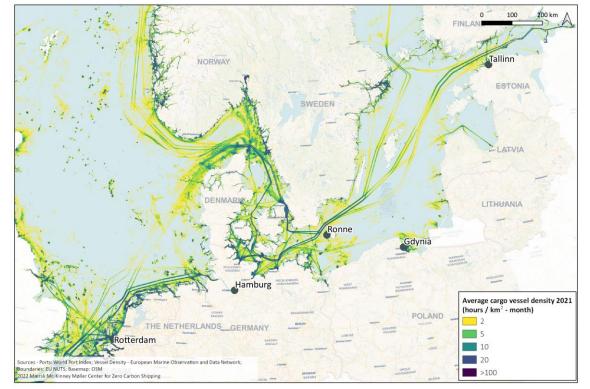
Ferry Vessel Traffic in the Baltics

Sources - Vessel Density Data: EMODnet; Passenger Data: Eurostat; Ports: World Port Index; Boundaries: EU NUTS; Basemap: OSN 2022 Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Cargo vessel operations in the region

Cargo vessel are instrumental to decarbonized shipping and central to green corridors in the region

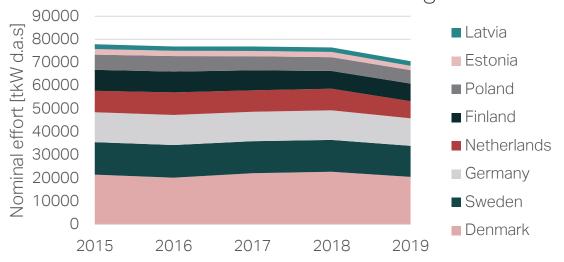


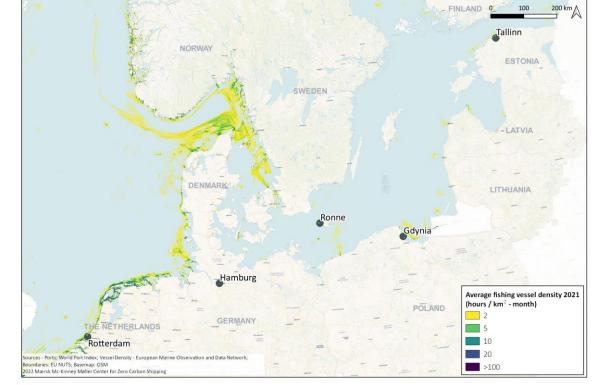

As a combined segment cargo shipping has potential to eliminate up to 8 mTons/year CO_2 emissions in the region on the path of decarbonization!

- 1. Part of the fleet operates exclusively in the region
- 2. Part of the fleet operates in line operation between selected ports in the region with fixed cargo transport
- 3. Selected cargo may have potential to carry a premium on transport cost

When the above three can be met, there is a good potential to pursue a green corridor!

There is a need to determine actual operators!

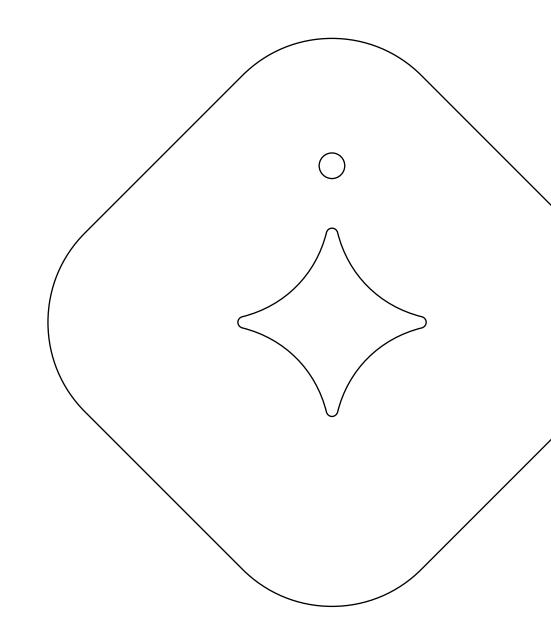

Maritime cargo transport 2021


Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Fishing fleets operation in the region

- The total fishing effort is declining, the CO₂ impact minimal, and the fleet is scattered with operation out of many ports
- The fishing fleet does not appear as an option for the first demonstration of green corridors, but can utilize infrastructure build for other segments

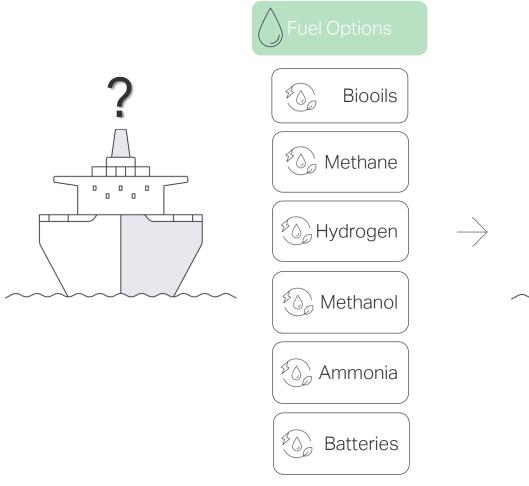
Fishing Vessel Activity in the Baltic Region

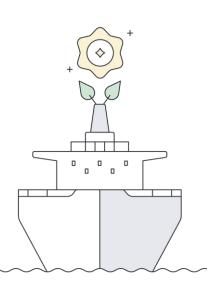

Fishing fleet activity 2021

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

1. View Data | EMODnet Human Activities (emodnet-humanactivities.eu)

2. ICES (2021): Greater North Sea ecoregion – Fisheries overview. ICES Advice: Fisheries Overviews. Report. ttps://doi.org/10.17895/ices.advice.9099 3. ICES (2021): Baltic Sea Ecoregion - Fisheries overview. ICES Advice: Fisheries Overviews. Report. https://doi.org/10.17895/ices.advice.9139


Fuel option and choice



Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Fuel options and choice

Primary fuel types for first mover shipping segments

Assessments

Fuel Pathway Maturity Map

A simple, overview of readiness across the main alternative fuel pathways

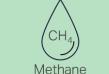
	Feedstock availability	Fuel production	Fuel storage, logistics & bunkering	Onboard energy storage & fuel conversion	Onboard safety & operations	Vessel emissions	Regulation & certification
E-ammonia							
Blue ammonia							
E-methanol							
Bio-methanol							
methane							
lio-methane							
3io-oils							
	MATURE	solutions id		MAJOR CHALLENGES			

Solutions are available, and none or marginal barriers are identified. Solutions exist, but some challenges on e.g. maturity and availability are identified.

Solutions are not developed, or lack specification.

<u>Fuel Pathways | Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping</u> Please not this does not include commercial feasibility

Technical readiness of primary fuel choice


Bunkering infrastructure Use on vessels

Bunkering infrastructure Can be bunkered from existing fuel infrastruc., but managing a variety of bio-oil specifications and potential mix of bio-oils can prove to be challenging

Use on vessels

Can be used on most vessels with no or limited modification Impact of varying fuel properties (e.g. stability, acidity, corrosion) requires attention

Bunkering infrastructure Can be bunkered using existing LNG infrastruc. A remaining challenge at terminals and during bunkering is the low boiling point resulting in a latent risk of boil-off.

Use on vessels Drop-in solution on LNG fuelled vessels If regulations and safety practices are followed, no obstacles remain regarding safety and onboard operations for major scaling of methane

Bunkering infrastructure No existing bunkering infrastructure Discussions on infrastructure in Hamburg and Rotterdam

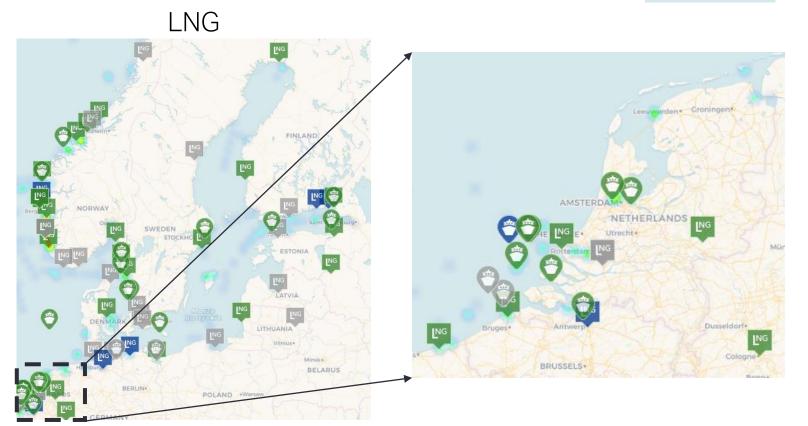
Use on vessels Only applied for inland barges and range extension Only 4 stroke engine technology available On board fuel management and safety to be addressed

Bunkering infrastructure 10 known storage terminals in the region No landbased facilities for fuel bunkering Ship to ship bunkering possible

Use on vessels Engines in commercial operation since 2017 and available for certain classes No expected obstacles regarding onboard fuel safety and operations

Bunkering infrastructure Around 15 existing storage terminals in region¹ No land based facilities for fuel bunkering, Ship to ship bunkering possible

Use on vessels Engine development in progress both for two-


stroke and four-stroke solutions, but no commercially available solutions On board fuel management and safety to be addressed

 $\langle \bullet \rangle$

Availability of alternative fuels – Existing and planed port infrastructures

Infrastructure In operation Decided Under discussion

Availability of alternative fuels – Existing and planed port infrastructures

Infrastructure In operation Decided Under discussion

Ammonia

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Other port infrastructure Shore power, batteries, ...

- Shore power or shore supply is the provision of shoreside electrical power to a ship at berth while its main and auxiliary engines are shut down
- Shore power saves consumption of fuel that would otherwise be used to power vessels while in port, and eliminates the air pollution associated with fuel consumption and reduces noise
- Examples of users are ferries and cruise ships for hotel electric power
- Some port city may have anti-idling laws that require ships to use shore power
- Batteries are seen on ferries with short connections

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Commercial readiness of primary fuel choice

Commercial readiness

Foreseen availability within region Relative cost levels

Availability within region Around 20 existing liquid biofuel facilities exists within the region Half of these are in commercial production

Relative cost levels^{1,2} 2025: 37 – 54 \$/GJ 2030: 23 – 26 \$/GJ 2035/50: 22-26 \$/GJ

Availability within region >300 biomethane facilities exists within the region for commercial production Nearly no e-methane For fuel supply, biogas will most likely be traded through certificates and enter the grid near the production facility

Relative cost levels^{1,3} 2025: 52 (23) \$/GJ 2030: 44 (21) \$/GJ 2035/50: 40/24 (19/16) \$/GJ

Availability within region More than 25 projects within region in various stages of development Many projects are focused on captive use of hydrogen Projects focused on supplying the maritime industry are limited to few

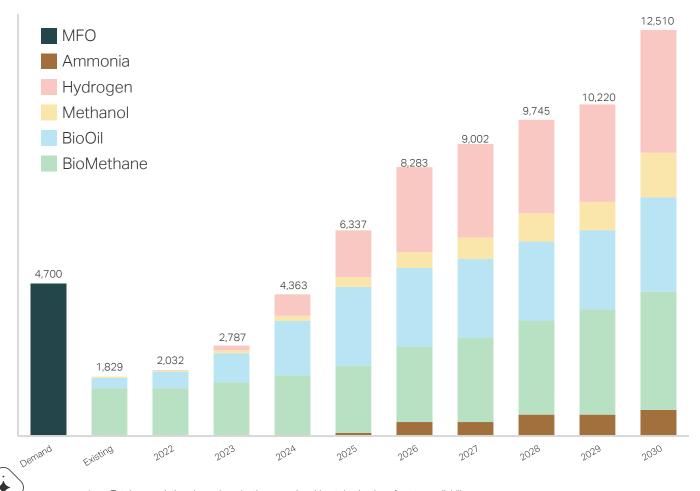
Relative cost levels^{1,4} 2025: 33 \$/GJ

2030: 27 \$/GJ 2035/50: 26/14 \$/GJ

Availability within region Few exiting grey production for traditional applications in chemical industry Several e-fuel and biofuel projects under early development within the region that can lead to production within the decade

Relative cost levels^{1,5} 2025: 67 (35) \$/GJ 2030: 54 (30) \$/GJ 2035/50: 50/32 (29/27) \$/GJ

Availability within region Exiting grey production for traditional applications fertilizer and chemical industry Several e-fuel projects under early development within the region that can lead to production within the decade


Relative cost levels^{1,6} 2025: 53 (44) \$/GJ 2030: 37 (30)\$/GJ 2035/50: 35/20 (29/28) \$/GJ

1. Datas from MMMCZCS, NavigaTE 2022 estimations 2.Drop-in PyOil BioDiesel - HTL BioDiesel, 3. e-Methane (BioMethane), 4. Compressed green Hydrogen, 5. e-Methanol (BioMethanol), 6. e-Ammonia (Blue Ammonia)

Planned Green Fuel Projects in the region¹ Cumulative Capacity (kTon <u>MFO equivalent</u>/year)

Thousand tons

1. Total cummulative planned production capacity without destingtion of sector availability

2. Gas for Climate Market State and Trends report 2021,

Availability of alternative fuels

Current outlook for alternative fuels suggest that all of these will be available within the region, but at different time horizons.

BioOils

Are already available and are foreseen to be fuel with the largest availability within the region in the coming decade

BioMethane

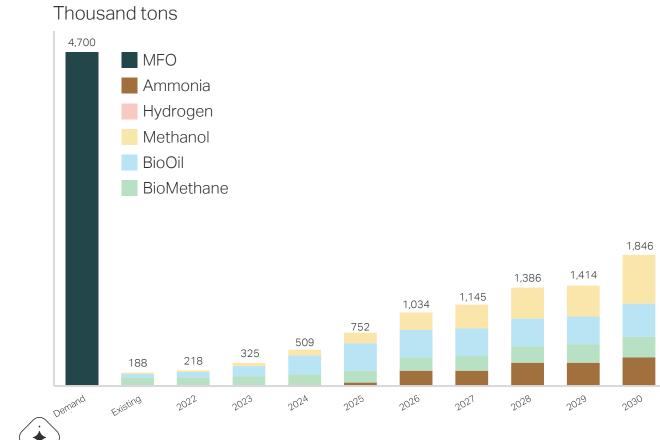
Will be available. Currently between 0,5 & 25% of national gas consumptions is biomethane, expectations are 10% by 2030, so and average growth of 12% growth per year has been assumed²

Methanol

Is expected to be available within years, but growth of availability is not seen until end of the decade

Ammonia

Is expected to be available within years, but only limited growth in availability is seen within the decade


Hydrogen

Only anticipated for in-land shipping

Planned Green Fuel Projects in the region

Cumulative Capacity <u>adjusted for estimated sector competition</u> (kTon <u>MFO equivalent</u>/year)

Cumulative Capacity <u>adjusted for estimated sector</u> <u>competition</u> (kTon <u>MFO equivalent</u>/year)

Availability of alternative fuels considering sector competition

Several fuels will be demanded by other sectors, such as land transport, aviation, chemical industry, and fertilizers, which will limit the actual availability to shipping

BioOils

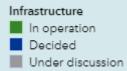
According the Industry Transition Strategy¹ from MMMCZCS 16% of the available bio-oils, are estimated to be available for shipping

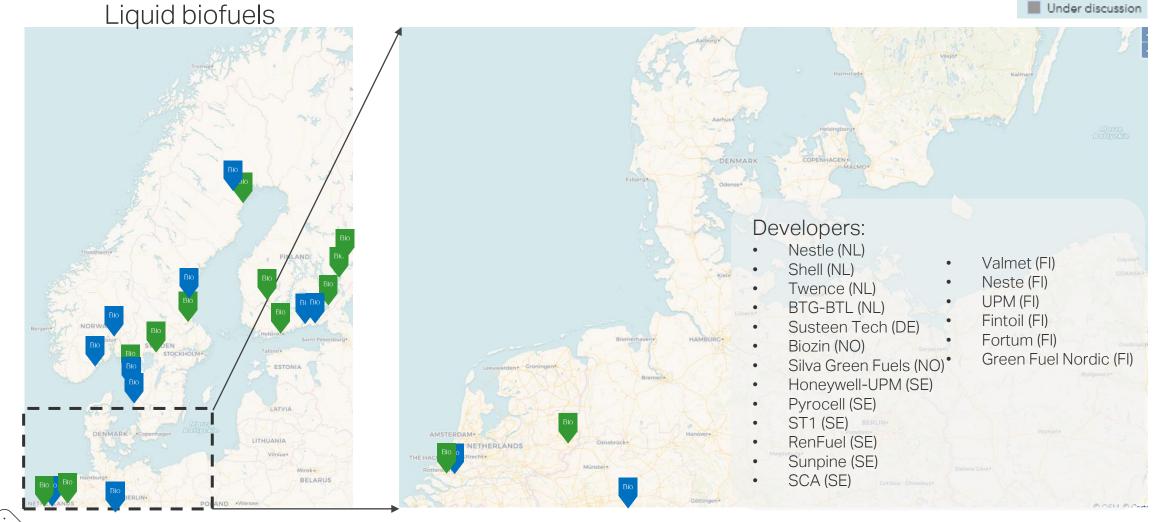
BioMethane

According to the Industry Transition Strategy¹ from MMMCZCS 8% of the available Biomethane is estimated to be available for shipping

Methanol

Has an existing market in the chemical industry, so it is assumed that only 50% of the installed capacity will be available to shipping

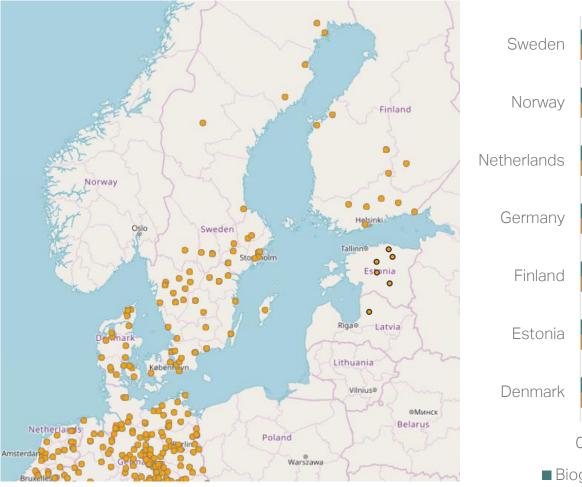

Ammonia


Following the Ukraine/Russia, the European fertilizer industry has been put under pressure due to high gas prices and a stop of import from Ukraine. Thus, significant production can go to fertilizers – 50%

Hydrogen

Only anticipated for in-land shipping, and consequently not part of sea transport

Availability of alternative fuels – Existing and planed production infrastructures



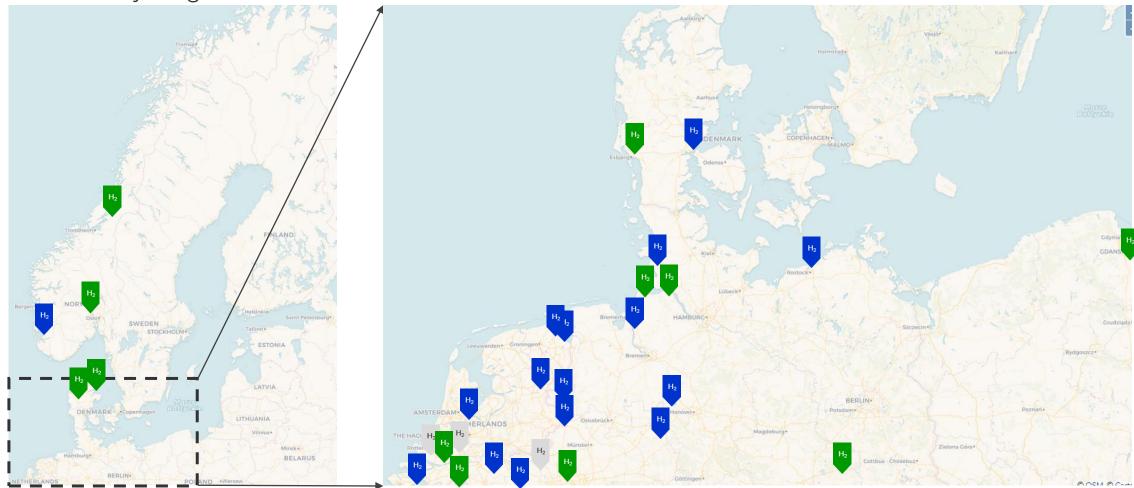
Bio-based industry (europa.eu

European Biomethane Mac

Availability of alternative fuels – Existing biomethane production infrastructures

50 150 200 250 100 Biogas facilities Grid connected

ightarrow Facts

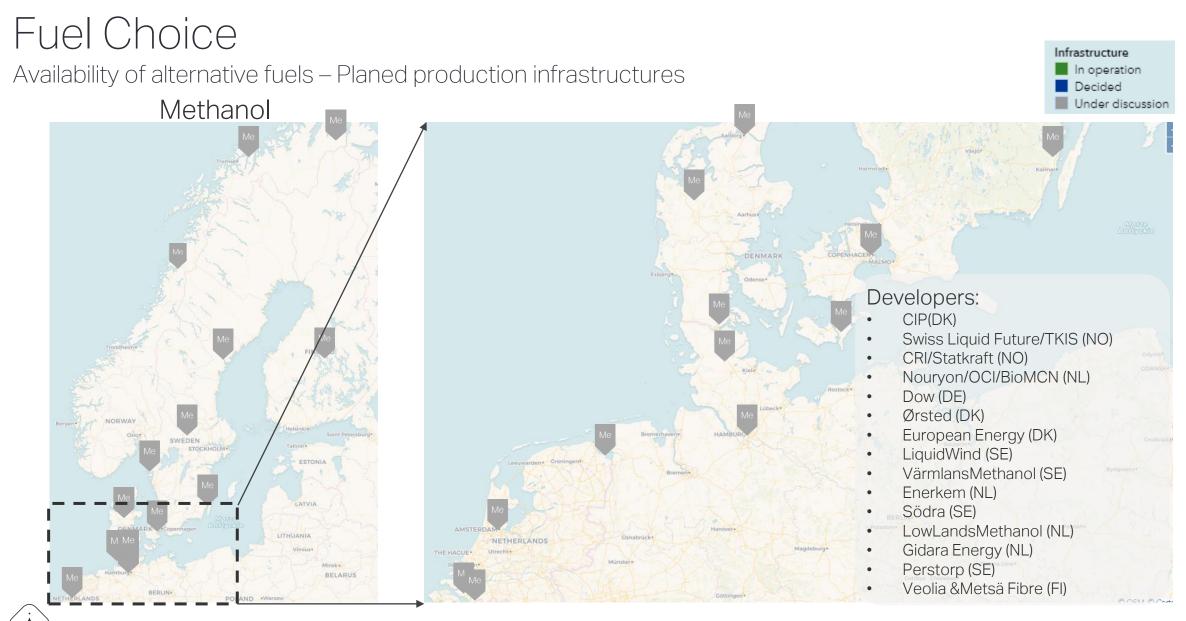

More than 300 biomethane facilities exists within the region

Near all of these are for commercial production

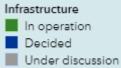
For fuel supply, however, the biomethane will most likely be traded through certificates and enter the grid near the production facility...

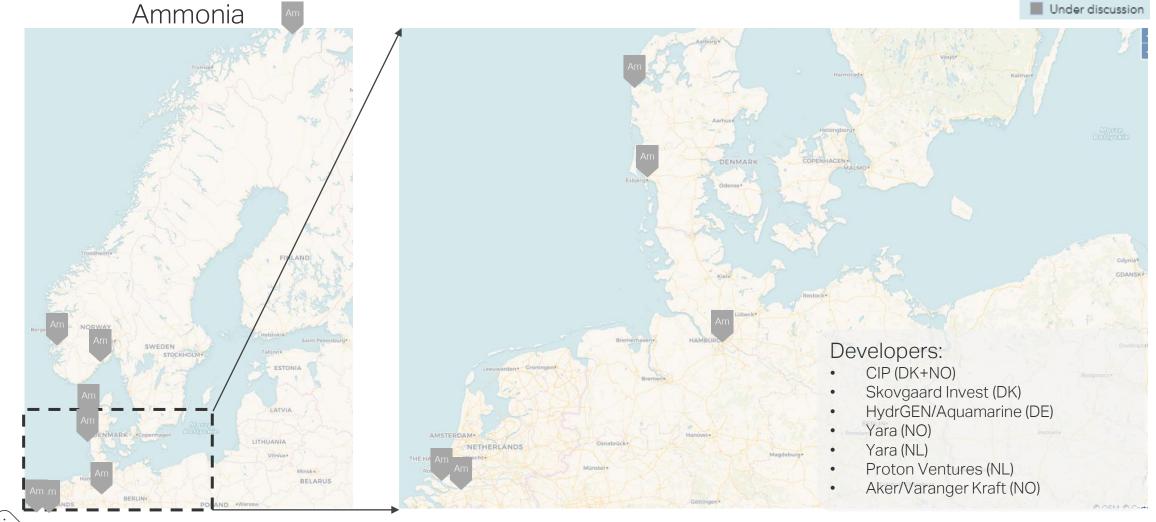
> However, is this supported by the GHG Protocol when accounting scope 1 emissions by operators???

Availability of alternative fuels – Planed production infrastructures Hydrogen



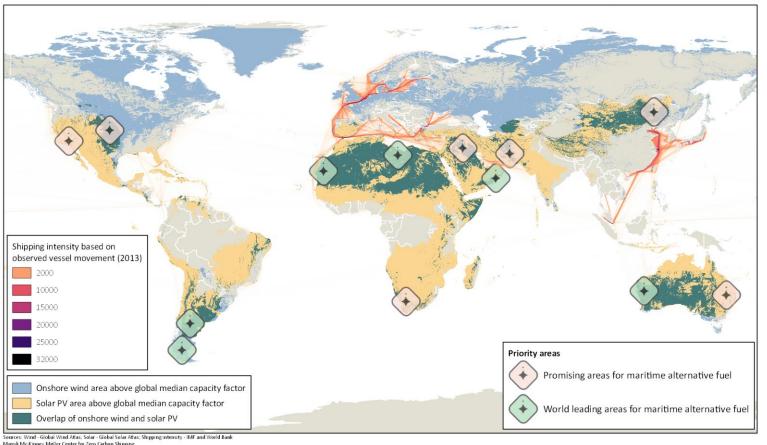
 Infrastructure

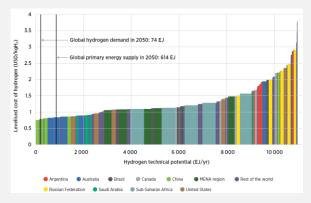

 H₂ Production


 Integrated production

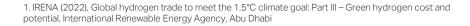
 H₂ Infrastructure

Availability of alternative fuels – Planed production infrastructures




MMMCZCS data

Fuels supply from outside the region The global potential for production and supply of alternative fuels is considerable


Shipping Intensity and Areas with High Solar and Wind Capacity

The global potential for production of renewables, hydrogen and derived fuels **exceeds the forecasted demand** by more than one order of magnitute¹

Epicenters for production lies outside the region, so as production scales globally, imported fuels will add significantly to the regionally alternative fuel availability and cost of fuels are equally expected to decrease.

Global outlook for alternative fuels

Societal readiness of primary fuel choice

Societal readiness

Regulatory barriers Requirements on emissions

Regulatory barriers There is no ammonia fuel standard. Permitting and safe handling in ports is to be defined, and LCA policy needs to be developed. Public acceptance !

GHG impact¹

Well To Wake emission⁶ 2025: 1,0 (19,3) kgCO_{2eq}/GJ 2030: 0,7 (17,8) kgCO_{2eq}/GJ 2035: 0,5 (16,5) kgCO_{2eq}/GJ

Reduction potential 2025: 99 – 80%

2025: 99 - 80% 2030: 99 - 81% 2035: 99 - 83%

Regulatory barriers Fugitive emissions needs to be controlled for biomethane, while acceptable CO₂ sources are to be defined for emethane. Thus, LCA policy needs to be

CH.

Methane

GHG impact¹

developed

Well To Wake emission³ 2025: 11,6 (21,0) kgCO_{2eq}/GJ 2030: 11,4 (16,9) kgCO_{2eq}/GJ 2035: 11,3 (13,9) kgCO_{2eq}/GJ

Reduction potential

2025: 88 – 78% 2030: 88 – 82% 2035: 88 – 86%

Regulatory barriers Implementation at scale is difficult since tariffs are under revisions, holding back FID's on H₂ production and derivatives

GHG impact¹

Well To Wake emission⁴ 2025: 1,5 (17,4) kgCO_{2eq}/GJ 2030: 1,1 (16,0) kgCO_{2eq}/GJ 2035: 0,7 (14,7) kgCO_{2eq}/GJ

Reduction potential

2025: 98-82% 2030: 99-83% 2035: 99-85% National support to storage of CO_2 , makes production of e-methanol uneconomic and acceptable CO_2 source to be defined. LCA policy needs to be developed

Methanol

Regulatory barriers

GHG impact¹

Well To Wake emission⁵ 2025: 0,8 (10,4) kgCO_{2eq}/GJ 2030: 0,5 (8,4) kgCO_{2eq}/GJ 2035: 0,4 (6,6) kgCO_{2eq}/GJ

Reduction potential

2025: 99 - 89% 2030: 99 - 91% 2035: 99 - 93%

1. Datas from MMMCZCS, NavigaTE WTW Position Paper

Bio-oil

Standardization is required

around bio-oil including

rules for emissions for

identical, bio-products.

vary, so development of

Well To Wake emission²

2035: 7,8 - 9,6 kgCO_{2eo}/GJ

Reduction potential

2025: 80-71%

2030: 84 - 77%

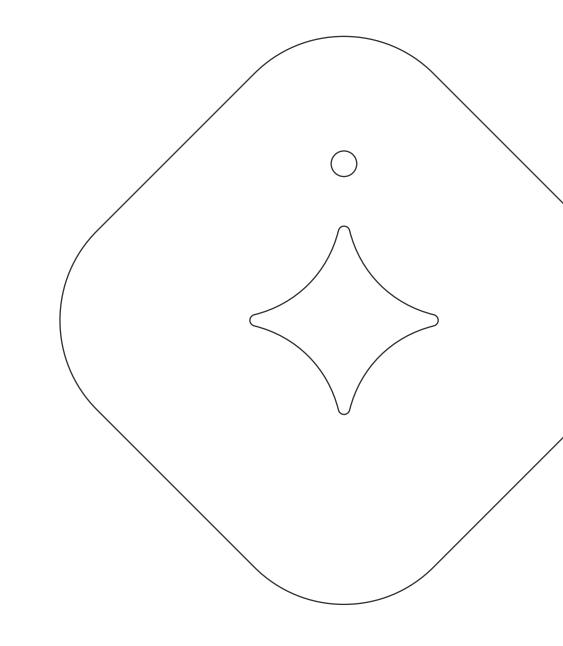
2035: 92-90%

2025: 18,6 - 27,8 kgCO_{2eq}/GJ

2030: 14,8 - 22,0 kgCO_{2eq}/GJ

standards is complex.

GHG impact¹


Feedstock and process will

comparable, but not

Regulatory barriers

2. HTL – PyOil, 3. e-Methane (BioMethane), 4. e-Hydrogen (Blue Hydrogen), 5. e-Methanol (BioMethanol), 6. e-Ammonia (Blue Ammonia) 3 Relative to LSFO

Project Partner Ports -Activities in region

Primary trade routes Port of Rotterdam

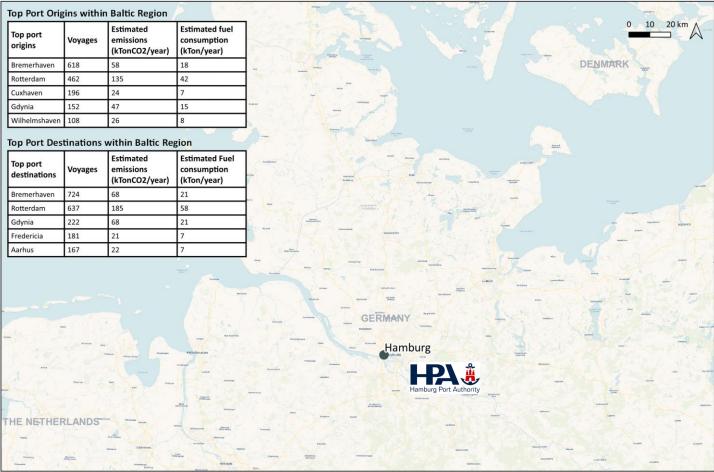
- Port of Rotterdam is the most active port in the region across all cargo vessel segments, which also is reflected by the emissions and fuel consumption associated with voyages to and from the port
- The most activities are seen to the upcoast German ports Hamburg and Bremerhaven
- The leg between Port of Rotterdam and Port of Hamburg comes out as the most active voyage in the region!

Rotterdam All Maritime Activity 2021

Top port origins	Voyages	Estimated emissions (kTonCO2/year)	Estimated Fuel consumption (kTon/year)
Hamburg	1,137	946	295
Bremerhaven	528	337	105
Klaipeda	221	447	140

Top Port Destinations within Baltic Region

Top port destinations	Voyages	Estimated emissions (kTonCO2/year)	Estimated Fuel consumption (kTon/year)
Hamburg	2,200	1,830	572
Bremerhaven	796	509	159
Göteborg	336	134	42
Helsinki	269	440	137



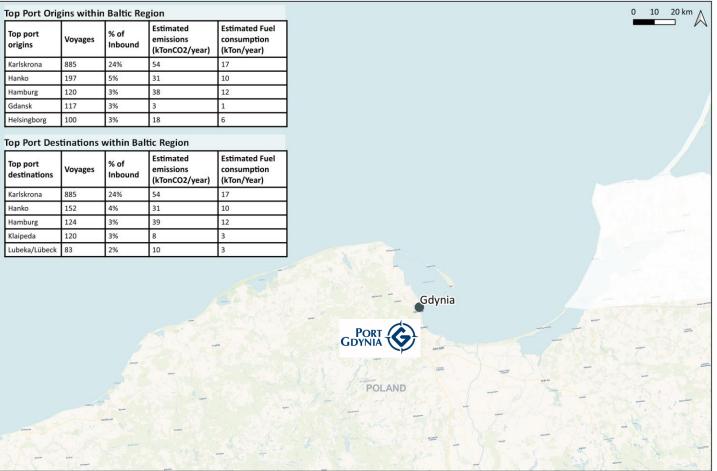
Sources: Port data - Partners; Vessel Density - IMF and World Bank; Ports - World Port Index; Basemap from OSM 2022 Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Primary trade routes Port of Hamburg

- Voyages to and from Bremerhaven and Port of Rotterdam are by far the most active connections for Port of Hamburg in the region
- The connection to Bremerhaven may correlate strongly to the feeder operation into the region
- The feeder fleet is a vessel segment of focus to supply with alternative fuels due to voyages and frequency

Hamburg Bulk, Tanker, and Container Activity 2021

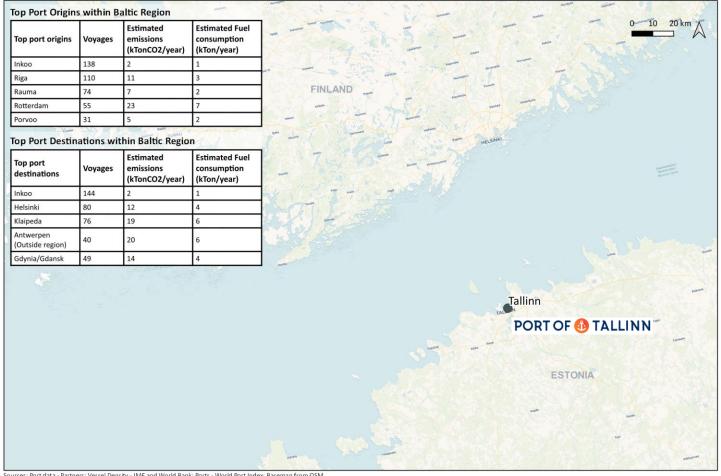
Sources: Port data - Partners; Vessel Density - IMF and World Bank; Ports - World Port Index; Basemap from OSM 2022 Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping



Primary trade routes Port of Gdynia

- The Port of Gdynia is a node of the TEN-T Core Network and the entry point of the Baltic-Adriatic Corridor, the extension of which connects
 Gdynia with Sweden via Gdynia-Karlskrona motorway of the sea
- One of the most active connection in Gdynia is Gdynia-Karlskrona with RoPax
- An alternative fuel supply to the RoPax could be an efficient decarbonization target

– Subsequently supplying cargo ships...

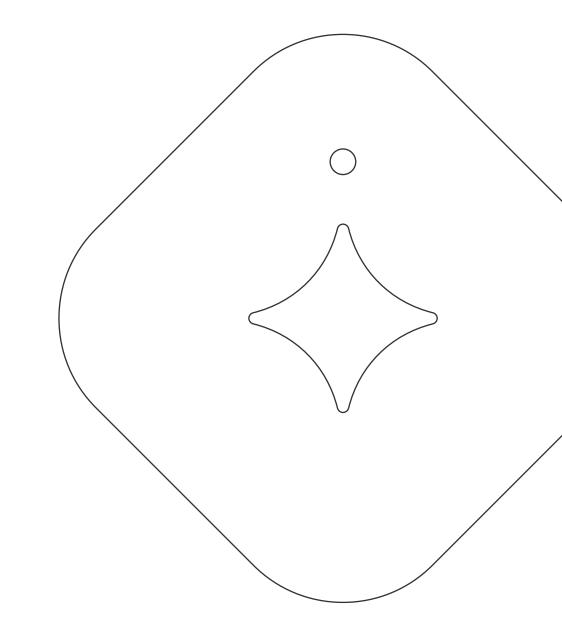

Gdynia RoPax, Bulk, Tanker, and Container Activities 2021

Sources: Port data - Partners; Vessel Density - IMF and World Bank; Ports - World Port Index; Basemap from OSM 2022 Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

- Estonia is on the European TEN-T North Sea- Baltic corridor and Port of Tallinn is on the core network of the ports in Europe. Located on the east coast of the Baltic Sea, Port of Tallinn is well placed for transhipments between the East and West as well as the North and South.
- The dominating maritime traffic to and from the Port of Tallinn are ferry lines to:
 - Helsinki (FI), Vuossari (FI), Hanko (FI), Kapellskär (SE), and Stockholm (SE)
- An alternative fuel supply to the RoRo, RoPax (inc. domestic), container and cruise fleets could be an efficient decarbonization target.

Tallinn Bulk, Tanker, and Container Activity 2021

Sources: Port data - Partners; Vessel Density - IMF and World Bank; Ports - World Port Index; Basemap from OSM 2022 Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping


Primary trade routes Port of Roenne

- Port of Roenne is centrally placed in the middle of the entry to the upper Baltic sea
- The dominating maritime traffic to and from the port is ferry lines connect to:
 - Ystad (SE), Koge(DK), and Sassnitz (DE)
- The island depends on ferry connection and has potential for local fuel production, which could be an attractive for target for decarbonization

Rønne Ferry Activity 2021

Port case on: Adaption of new fuels

Adaption of new fuels in ports

LNG, Methanol, Ammonia, Electric, Nuclear, Autonomous, LOHC, ...

Have you ever had the question: "When are you ready"?

- In best practice of industry, and in many reports it is stated:
 - The ports have to take care of....
 - Policy makers and regulatory authorities directing that ports should be ready for at
- We need to accelerate all we can do to facilitate a timely energy transition for shipping – This requires ports to be <u>Fuel Ready!!!</u>

Port Readiness Level

An instrument for ports to share their readiness to serve calls, bunkering, service, maintenance etc. of alternative fuelled vessels

How ports and other stakeholders can use port readiness levels to provide transparency and unlock new fuels-related opportunities

- Ports play a crucial role in the adaption and the pace of alternative fuels deployment
 - To accelerate the energy transition in shipping, ports need to make sure they are ready to handle and/or supply new type of fuels
 - Port Bunkering, Call, Service, in-port, anchorage
 - **Readiness** What is your "Ready"?

Level What is current and future readiness for fuels

 The Port Readiness Level offers a simple transparent way to share when a port is ready for what!

Introduction to Port Readiness Level What is it and why it is useful?

- Port Readiness Level serves as indicator and guidance tool

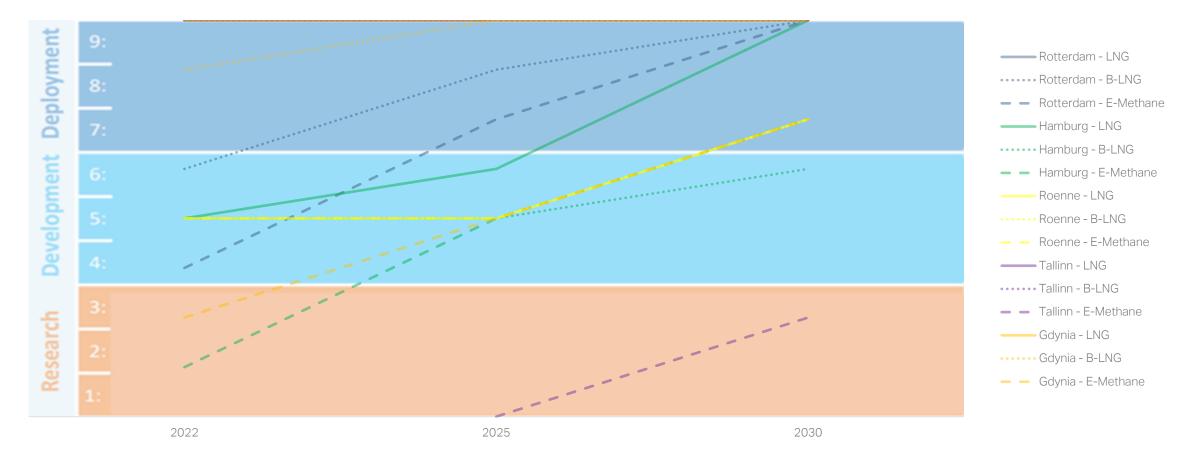
It provides/requires:

- 1. Common language
- 2. Familiarity based on TRL format
- 3. Self-assessments of ports
- 4. Port ambition
- 5. Port guidance
- 6. Expectation management
- 7. Stakeholder communication
- 8. Communication instrument

lent	9: Vessel call or Bunkering service readily available						
Deployment	8: Vessel call or Bunkering system complete and qualified						
Dep	7: Vessel call or Bunkering system established on a project basis in an operating environment						
nent	6: Vessel call or Bunkering framework demonstrated in a controlled environment						
Developm	5: Vessel call or Bunkering framework designed						
Dev	4: Vessel call or Bunkering approach decided						
÷	3: Sufficient Information gathered						
Research	2: Interest of port stakeholders determined						
Re	1: Fuel relevance assessed						

Identification of green corridor opportunity and feasibility A profile of various ports along a certain route is needed to frame the opportunity and assess the feasibility of a green corridor

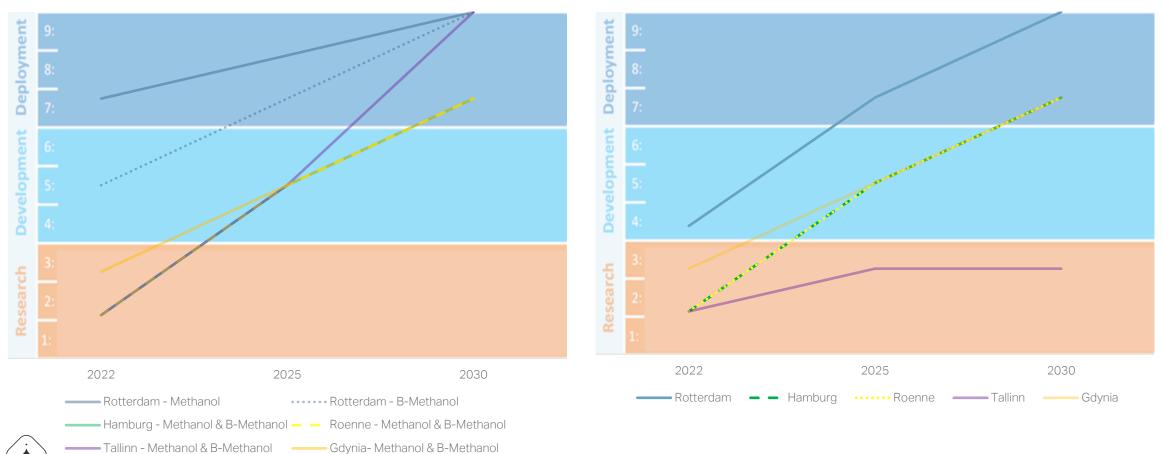
PRL provides insights into the current and expected future 'readiness' of ports (both port of call and bunker ports) for alternative fuels.


- Self-assessment by partnering ports
 - Most ports expect to become a bunker port for most alternative fuels
 - LNG, methanol and ammonia are the predominant alternative fuels considered

	Port of Rotterdam	Port of Hamburg	Port of Roenne	Port of Tallinn	Port of Gdynia
LNG	Bunker	Bunker	Bunker	Bunker	Bunker
Bio-LNG	Bunker	Bunker	Bunker	Bunker	Bunker
e-Methane	Bunker	Bunker	Bunker	Bunker	Bunker
Methanol	Bunker	Bunker	Bunker	Bunker	Bunker
Bio-Methanol	Bunker	Bunker	Bunker	Bunker	Bunker
Ammonia	Bunker	Bunker	Bunker	Port of call	Bunker
Hydrogen – pressure	Bunker	Bunker	N/A	Bunker	Bunker
Hydrogen – Liquid	Bunker	Bunker	N/A	Bunker	Port of call
Hydrogen – pressure (inland)	Bunker	Bunker	N/A	N/A	Port of call
Hydorgen – liquid (inland)	Bunker	Bunker	N/A	N/A	Port of call

Identification of green corridor opportunity and feasibility

LNG is at most ports already common practice, while Bio-LNG and e-Methane are expected to become more dominant towards mid-decade



Identification of green corridor opportunity and feasibility

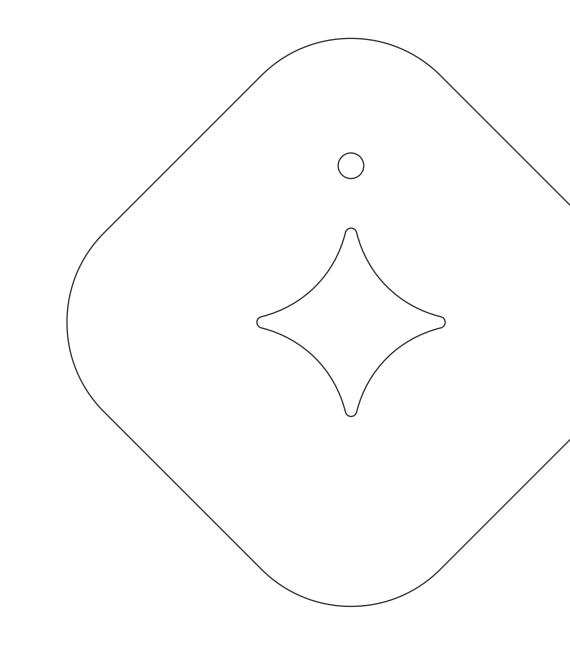
Methanol is already quite established in Rotterdam, whilst the other ports are expecting to be ready around 2026 Ammonia bunkering is in all ports in development, and most ports expect to be ready around 2028

E-Methanol & B-Methanol

Ammonia

Port Readiness Level

The goal is to publish the PRL Indicator and the guidance ultimo 2022


Current crafting process...

- WPCAP and the IAPH/CMF are developing the topics a port has to consider for each level
- For "Ports of Call" and "Bunkering Ports" topics on:
 - Governance
 - Infrastructure
 - Safety (including a safety framework)
 - Availability
 - Feasibility

- ...are all addressed so: You can already start now!

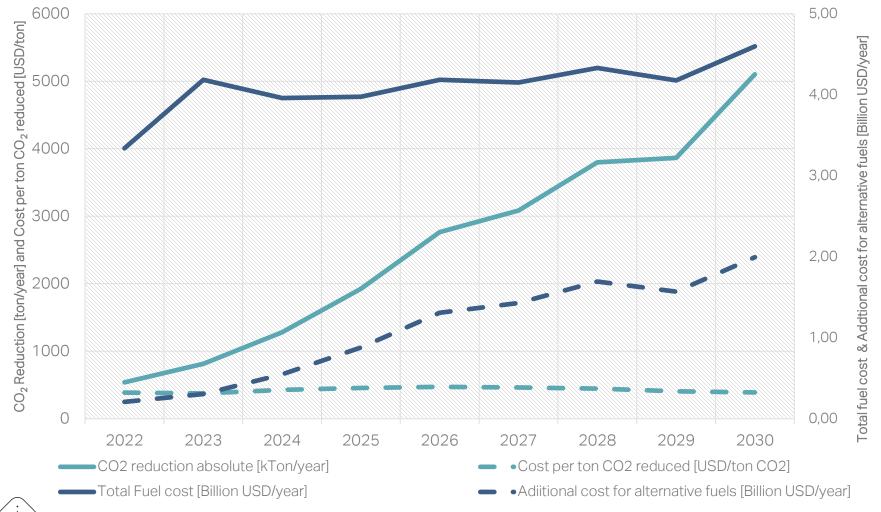
2	9. 1/00	sel call	or Rupk	ering co	nvice	readily availab	lo				
le	9: Vessel call or Bunkering service readily available										
nepioyment	8: Ves	sel call	or Bunk	ering sy	stem o	complete and	qualified				
net	7: Vessel call or Bunkering system established on a project basis in an operating environment										
ment	6: Vessel call or Bunkering framework demonstrated in a controlled environment										
elopn	5: Vessel call or Bunkering framework designed										
Leve	4: Vessel call or Bunkering approach decided										
=	3: Sufficient Information gathered										
kesearcn	2: Interest of port stakeholders determined										
אַר	1: Fue	l releva	nce asse	essed						WPC	u 😌
el 1: Fi	iel relevance a	ssessed									
ce con				vessels calling a	it your port)						
ustry ti egulati	en		holders detern		aadad) with	stakeholders in your value o	hain				
acity fi			icient informat		eeded) with	stakenoiders in your value o	112111				
ichmar	producers		n of timeline								
bility of	ff Suppliers'	Viability for specification		el call or bunke	ring approac	al decided:					
s and c			working grou	level 5: vessel	call or bunk	tering framework designed					
portuni			time to decid	prepare instru		fety, audits, operational ch					
npatibi	lit You can ru					el call or bunkering framew		rolled environment			
	Seeing if c	Designing a	decision on v	the framewo charge at por	Shore side	pring of first bunkering call of PRL 7: Vessel call or Bun	tering system established o	n a project basis in	an operating er	wironment	
		Demand su	set up roadm	Determine ve	Safety and						
		Join consort	confirm com	Engineering a	Joint bunk	Regular op	call or bunkering system com	plete and qualified			
		Validation/o	organisation, assess level	Due diligence	vessel and	Exemption lio Stress test					
			understandir	consultant or	Initiate co	Communication Proper tear	In New to established compatible				
			incentives de	Stakeholder	Review the		Bunkering supply adequate to	meet demand			
				Regulatory fr as harbour m		Prepare for Marketing, pr	Contracts/agreements signed	with suppliers and cust	omers		
				ensure port i		Exemption Step back pro		ion charing artablished			
						Accreditation Operationa Licences have	Manifester	ton sharing established			
						Communica Compliance s	Financially viable				
						Infrastructi Emergency re					
						Stress checkin					
							-	PORTS CLIMAN			
							and	2	~	Por	tof
					13	DI 🔨	WPCAP	- Contraction	\sim	Ro	terdam
						International association of ports and harbors	WI SAF		~	NO	

Cost of transition

Incremental fuel cost to enable the transition*

Fuel cost and emission reduction benefits

Fuel (2030)	Annual fuel cost [Billion USD/year]	Additional cost ¹ [Billion USD/Year]	CO ₂ reduction [kton CO ₂ /year]	Cost per ton CO ₂ [USD/ton CO ₂]
LSFO	2,6	0	0	0
Biooils ²	4,6 (5,2)	2,0 (2,6)	11.000 (12.000)	217 (182)
Methane ³	8,8 (4,2)	6,2 (1,6)	12.600 (11.700)	492 (137)
Hydrogen ⁴	5,4	2,8	14.200	197
Methanol ⁵	10.8 (6.0)	8.2 (3.4)	14.200 (13.000)	577 (262)
Ammonia ⁶	7.4 (6.0)	4,8 (3,4)	14.200 (11.600)	338 (293)


Baseline: Fuel demand: 4.700 kton/year = 200.220.000 GJ/year (MFO eq.) ~ 2,6 billion USD/year (2030 LSFO) – 14.300 kton CO₂/year Numbers Outside/(Inside) bracket:

1. PyOil (HTL), 2. e-Methane (BioMethane), 3. Compressed green Hydrogen, 5. e-Methanol (BioMethanol), 6. e-Ammonia (Blue Ammonia)



Cost of transition*

Cost of adapting projected and available fuel mix towards 2030, emissions, and cost of emissions reduction

Across fleet and excluding all investment cost required in the fuel supply chain and vessels
 Estimated based on WtW data from NavigaTE well-to-wake Position Paper

Decarbonization potential & cost Adapting the fuel scenario above has potential to decarbonize around 1/3 of the maritime sector in the region by 2030 at an additional fuel cost of 2,0 billion USD

- CO₂ emissions can be reduced from: 14.300 to ~9.200 kton/year¹
- Alternative fuels; e-methanol, biooil, biomethane and e-ammonia has higher cost than LSFO, but the total cost is to a degree counteracted by the cost reduction projected in the forward curve for LSFO cost
- Cost per avoided CO₂ is between
 480 and 380 USD/ton from 2024

What are the additional cost associated with building a green corridor, how to cover these and who should pay?

Cost of container transport on 1500 TEU vessel on green corridor

Fuel (2025)	LSFO	Bio-Oils	Methanol	Ammonia	
Fuel cost [USD/	660	1775	1340	1000	
Vessel rental / F	-	-	+15%	+15%	
Concumption	Sailing [Tons/Day]	40	42	85	90
Consumption	Berthing [Tons/Day]	2	2	4	5
Pilot fuel [Bio-C	Dil]	-	-	5%	5%
Single Allocatio	194	392	573	483	
CO ₂ reduction	0	76%	96%	94%	
CO_2 per Single	625	149	27	36	
Cost of CO ₂ red	duction [USD/Ton]	_	417	633	491

Based on the data and method by Yisong et al. (2020) the additional cost of container transport cost was estimated for selected fuels for 1500 TEU vessel

Cost Details for Two Vessel Types Hamburg – Kotka¹

Vessel Type	900 TEU	1500 TEU
Vessel Cost		
Vessel Rental Cost	6000	7500 USD/Day
Full Voyage Times	7	7 Days
Vessel Cost in Total	42000	52500 USD/Sailing
FuelCost		
Fuel Consumption on Sailing	30	40 Ton/Day
Fuel Consumption on Berthing	2	2 Ton/
Sailing Time on Sea	4.5	4.5 Days
Berthing Time in Port	2.5	2.5 Days
Price of Heavy Oil	650	650 USD/Ton
Price of Light Oil	1000	1000 USD/Ton
Fuel Cost in Total	92750	122000 USD/Sailing
Port Cost		
Port Cost of Hamburg	13000	14000 USD
Port Cost of Kiel Canal	15000	16000 USD
Port Cost Kotka	13000	14000 USD
Port Cost in Total	41000	44000 USD
Total Sailing Cost	175750	218500 USD/Sailing
Available Capacity	900	1500 TEU
Capacity utilization	75%	75%
Single Allocation Cost	260	194 USD/TEU

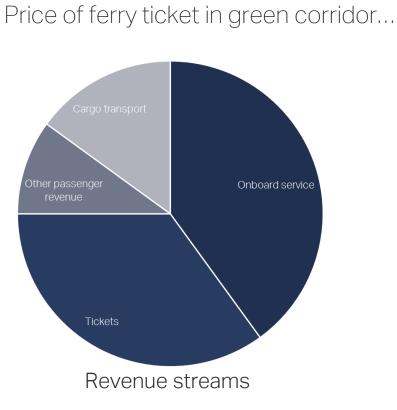
Yisong L., Xuefeng W., Hao H., and Hui Z. Research on feeder network design: a case study of feeder service for the port of Kotka, European Transport Research Review (2020) 12:61
 Methanol case with no additional cost no vessel rental, 20% discount on fuel cost (Methanol and pilot fuel), 50% discount on port costs

What are the additional cost associated with building a green corridor, how to cover these and who should pay?

Cost of container transport on 1500 TEU vessel on green corridor

Fuel (2025)		LSFO	Methanol	1	2	3	4	
Fuel cost [USD	660	1340	1070	1070	1070	1070	C Va	
Vessel rental / Port costs		-	+15%	+15%	Discount	+η	Free SP	1.
Osessities	Sailing [Tons/Day]	40	85	85	85	72	72	2.
Consumption	Berthing [Tons/Day]	2	4	4	4	4	0	
Pilot fuel [Bio-C	Pilot fuel [Bio-Oil]		5%	5%	5%	5%	5%	
Single Allocation cost [USD/TEU]		194	573	472	446	390	380	З.
CO ₂ reduction [WtW]		0	96%	95.7%	95,7%	96,2%	97.5%	
CO ₂ per Single Allocation [kg/TEU]		625	36	27	27	24	16	4.
Cost of CO ₂ red	-	491	465	420	326	305		

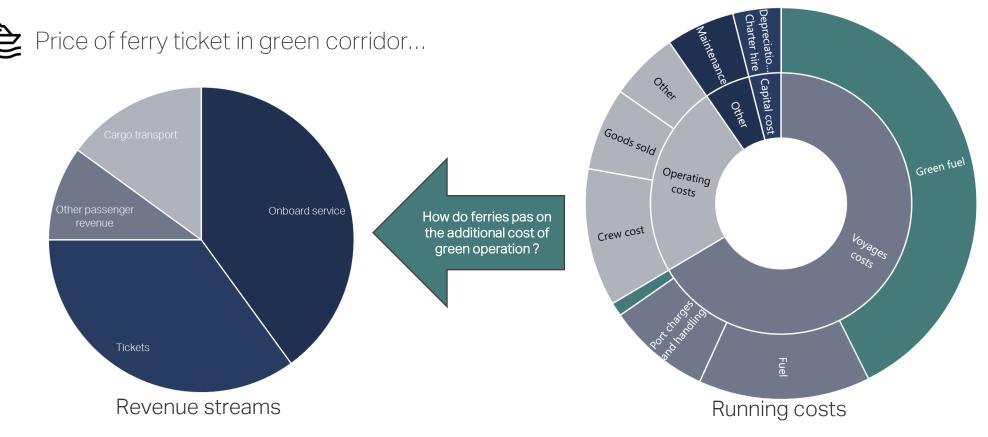
Based on the data and method by Yisong et al. (2020) the additional cost of container transport cost was estimated for selected fuels for 1500 TEU vessel


Cases introducing Value chain discounts

- 1. 20% on fuel
- 2. 15% on charter and 50% on port costs
- 3. 15% energy efficiency on vessel
- 4. Free shore power

Yisong L., Xuefeng W., Hao H., and Hui Z. Research on feeder network design: a case study of feeder service for the port of Kotka, European Transport Research Review (2020) 12:61 Methanol case with no additional cost no vessel rental, 20% discount on fuel cost (Methanol and pilot fuel), 50% discount on port costs

What are the additional cost associated with building a green corridor, how to cover these and who should pay?

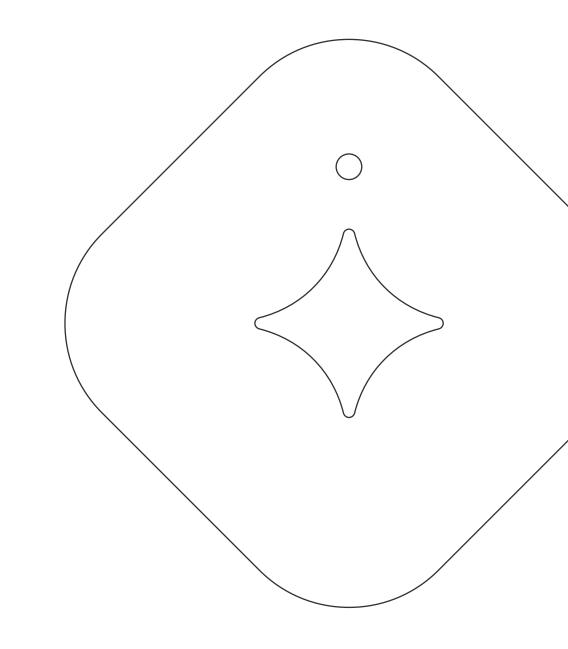


The revenue stream and running cost of operating and ferry line differs compared to cargo shipping due the combination of passengers' transport, cargo transport and onboard consumptions¹ Cargo transport can be up to 70 – 80% of revenue stream

I. Urbanyi-popiołek "The Economic Aspects of the Ferry Operator Activity", DOI: 10.18276/epu.2015.119-04

Ü. Bilen, H. Kramer, R. Monden, D. Scott, M. Bonazountas, S. Stamatis, V. Palla, A. Yrjänäinen, E. Kahva "Holistic Optimisation of Ship Design and Operation for Life Cycle," HOLISHIP, Horizon 2020 – 689074 (2018)

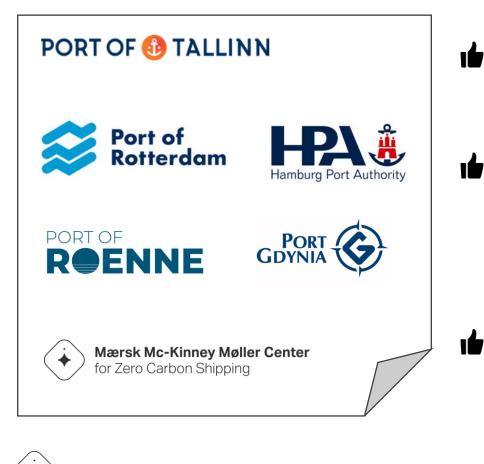
What are the additional cost associated with building a green corridor, how to cover these and who should pay?



The revenue stream and running cost of operating and ferry line differs compared to cargo shipping due the combination of passengers' transport, cargo transport and onboard consumptions¹ Cargo transport can be up to 70 – 80% of revenue stream

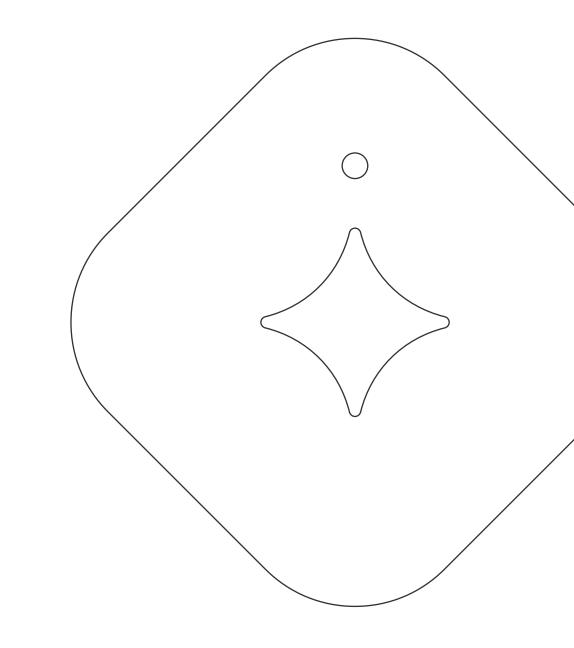
I. Urbanyi-popiołek "The Economic Aspects of the Ferry Operator Activity", DOI: 10.18276/epu.2015.119-04

Ü. Bilen, H. Kramer, R. Monden, D. Scott, M. Bonazountas, S. Stamatis, V. Palla, A. Yrjänäinen, E. Kahva "Holistic Optimisation of Ship Design and Operation for Life Cycle," HOLISHIP, Horizon 2020 – 689074 (2018)


Recommendations

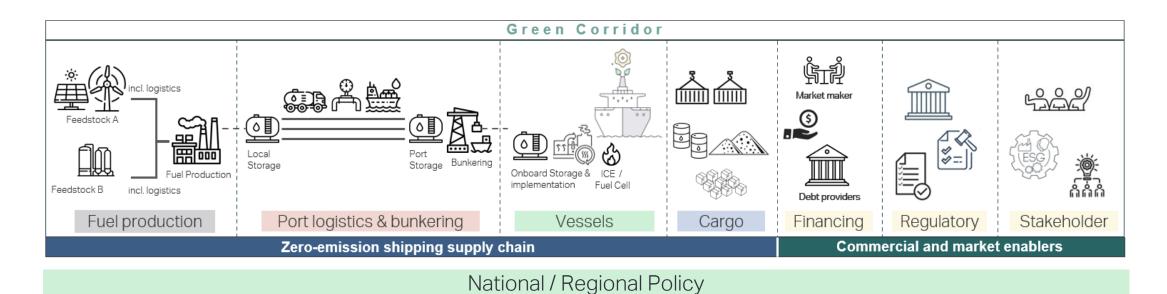
Recommendations for next steps

Potential green shipping corridors to be assessed in depth



- National and interregional ferry lines (RoPax, RoRo, Vehicle) with potential to operate on biooil, biomethane, methanol, or ammonia !
- Identifying feeder operator(s) to decarbonize loops from Rotterdam/Hamburg/Bremerhaven into the Baltic sea, which can tab into fuel infrastructure established for ferries
- Build initial fuel supply, port and bunkering infrastructure for the above at selected locations, which followers can subsequently tab into!
 - "Hot-spots" in the region would be ports with significant ferry and cargo activities
 - Develop economic incentive across value chain for first movers to enable the start of a transition!
 - What can each stakeholder do or offer?
 - Determine end customers with a wiliness to pay for green service

Additional information...



Stakeholder rounds

Key stakeholders that form a Green Shipping Corridor

Stakeholders

- Project developers
- Renewable energy
 producers
- Fuel producers
- National policy makers

Stakeholders

- Fuel transporters
- Storage terminals
- Bunker traders
- Bunker vessel operators
- Port Authorities
- Port working groups
- Port organizations (ESPO, IAPH)
- Municipalities
- Local authorities

Stakeholders

- Cargo ownersFreight
- forwards
- End customer

Stakeholders

٠

- Private banks
 - Public institutions
 - (funding)
- Insurers
- Policy makers

Stakeholders

- Shipping companies
- Class Societies
- Flag states
- IMO
- European Maritime
 Safety Agency
- Engine supplier / manufacturers

Stakeholder Rounds

Interview rounds creating a multitude of perspective from across the value chain

Ports

PORT OF DE PORT OF POR

Vessel owners & operators

Cargo owners

Stakeholder Rounds Interview focal point

Interview rounds creating a multitude of perspective from across the value chain

Fuel supply

- Project status/maturity, how far has it been developed, is it in Feasibility, or has Pre-FEED or FEED been completed, if not by when?
- The product: What is the product they aim for? Has it been finally decided? What capacity are they aiming for?
- Timeline, What is the outlook for FID? Construction and subsequent start-up and first delivery of product?

Bunkering

- Expectations and indications on fuel demand
- What demand signal for alternative fuels do local bunkering companies get from ship owners
- What are their expectation to deliver alternative fuels ie.
 - What
 - By when...

Vessel owners & operators

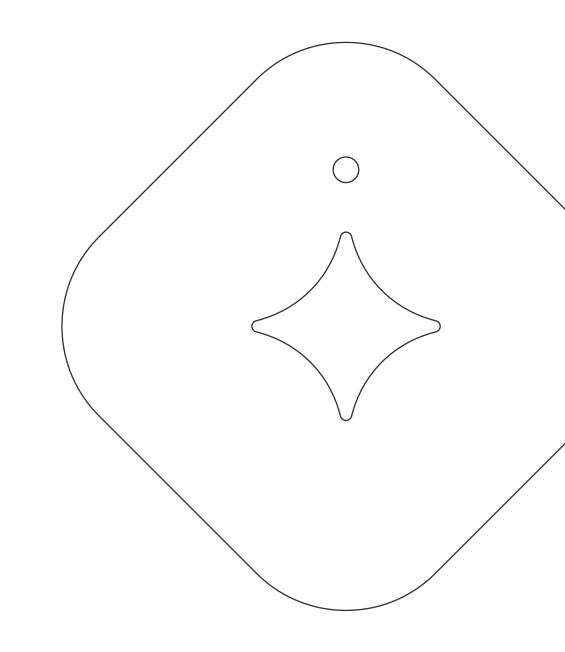
- What is the ambition for decarbonization and when
- What will CII and EU Fit for 55 and the ETS mean for your company
- Are there concrete plans for decarbonization
- Do your customers request green transport, is there willingness to pay?
- Is traffic in the area mainly line traffic or tramp service?
- Fuel and bunkering demands

Stakeholder Rounds

Interview rounds creating a multitude of perspective from across the value chain

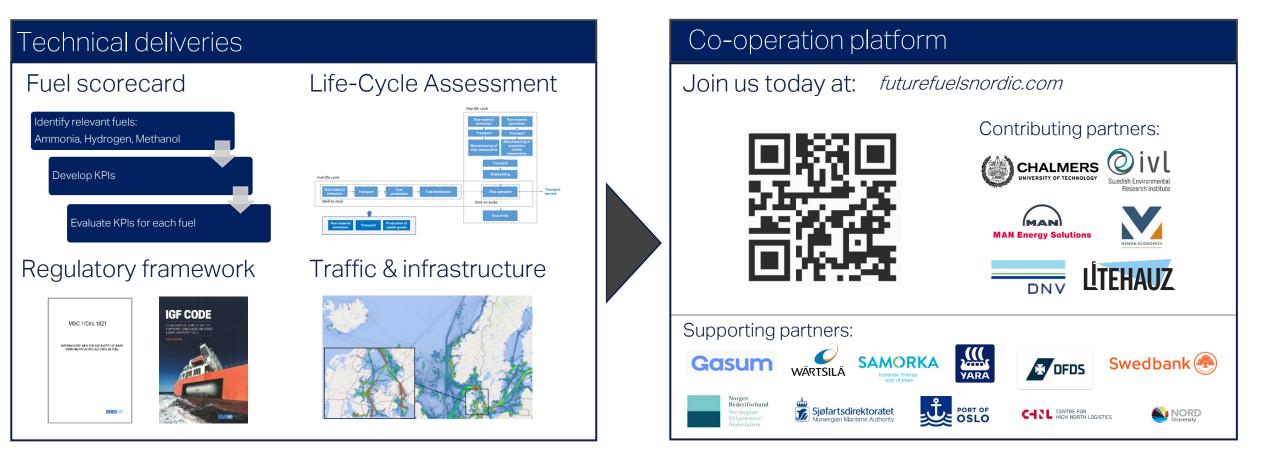
- Outlook for project and production aggregated in to Fuel options/choice
- Current interest in supply of alternative fuels concerns:
 - LNG and Bio-oils
- Increasing interest in Methanol

<section-header><section-header><section-header><image><image>

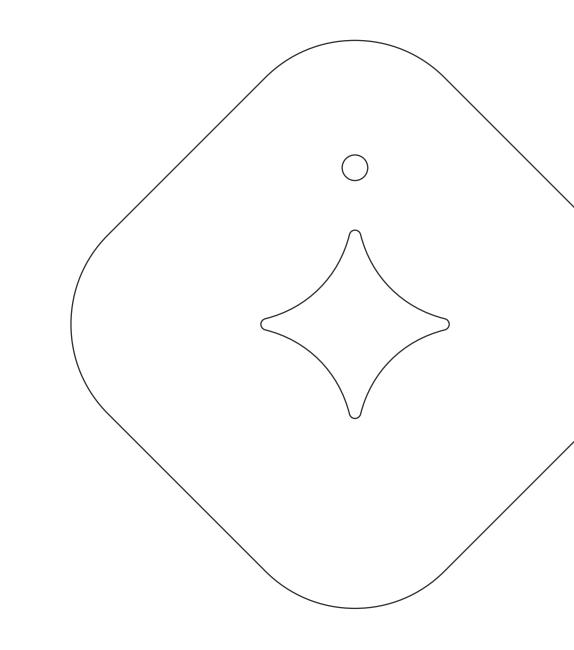

- Meets request for bio-oils and methanol
 - Helps that shipping lines have committed to an alternative fuel (e.g. Maersk and CMA to methanol) -> this gives clear demand signal
- Expected more interest in ammonia
- Engages or considers engagement in fuel production

Vessel owners & operators

- Generally ambitions to
 decarbonize between 2030 and
 2050
- In stakeholder group an ambitions to realize several DF methanol (from 2023) and ammonia (from 2025) vessels this decade


Other initiatives in the region

A Nordic Roadmap for the introduction of Sustainable Zero-carbon* fuels A four year Nordic collaboration *paving the way*


Goal

Reduce key barriers to implementation and establish a common roadmap for the whole Nordic region and logistics ecosystem towards zero-emission shipping.

Objectives

- Gain technical knowledge and regulatory development (H₂, NH₃, CH₃OH)
- Develop a Nordic Roadmap for future fuels
- Establish a Nordic co-operation platform and piloting of Green Shipping Corridors

Funding for further work

EU and national funding programs which could support subsequent work on realizing green shipping corridors

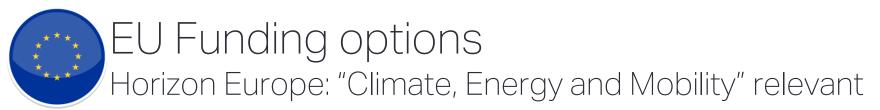
- Supports the development of high performing, sustainable and efficiently interconnected trans-European networks divided over 3 pillars: Transport, Energy and Digital
- Duration: 2021-2027
- Targeted phase: Implementation and production
- Challenge: projects must be identified as PCI in order to be eligible for financial support (this list is updated every two years)

- -CEF-Energy
 - Budget: €5.84 billion
 - Open call:
 - Energy infrastructure Projects of Common Interest (PCI's) – Works & Studies
 - Deadline: 1 September 2022
 - Call to monitor:
 - Cross-border renewable projects call for work and studies (will be published end 2022)

- -CEF-Transport
 - Budget: €14.5 billion
 - Open calls:
 - Alternative Fuels Infrastructure Facility (AFIF) – budget call €375 million
 - Aimed at the deployment of alternative fuel supply infrastructure
 - Rolling call, deadlines: 7 June 2022, 10
 November 2022, 13 April 2023, 19
 September 2023
 - Calls to monitor:
 - General Transport call budget €7
 billion

Page 68

EU and national funding programs which could support subsequent work on realizing green shipping corridors


- Focuses on highly innovative technologies and big flagship projects with European value added that can bring significant emission reductions. Duration: 2020-2030
- Targeted phase: Demonstration
- Total budget: €25 billion
- Themes: innovative low-carbon technologies and processes in energy-intensive industries, CCU, CCS, innovative renewable energy production, and energy storage

- Small-scale projects:
 - Small-scale: total capital costs < €
 7.5M
 - Budget for call 2022: €100M
 - Co-finances up to 60% of the project's capital and operating costs
 - Requirement: capital costs ranging from €2.5M - €7.5M

-Large-scale projects:

- Large-scale: capital exp. > € 7.5M
- Budget for call 2022: €1.5 billion
- Requirement: capital costs above €7.5M

EU and national funding programs which could support subsequent work on realizing green shipping corridors

- Facilitates collaboration and strengthens the impact of research and innovation in developing, supporting and implementing EU policies while tackling global challenges
- Duration: 2021-2027
- Targeted phase: Ideation, research, tests, demonstration
- Total budget: €95.5 billion
- Requirements:
 - Innovative technological developments and must solve an EU problem in climate, energy and/or mobility
 - Large market potential min 100M EUR in 5 years

- Open call as part of the Clean Hydrogen Partnership:
 - Development and demonstration of mobile and stationary compressed hydrogen refueling solutions for application in inland and short-distance maritime operations
 - Budget call 2022: €7 million, funding rate max 70% (for non-profit legal entities 100%)

Regional options

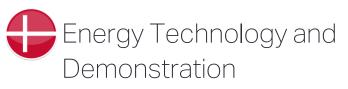
- OBJECTIVE: The Interreg South Baltic aims to unlock the potential for green and blue growth through cross-border cooperation between local and regional actors from Denmark, Germany, Lithuania, Poland and Sweden

- TYPE: Grant

– SUM: €78 million, the co-financing rate for Swedish and Danish beneficiaries is up to 75% of ERDF co-financing

Interreg **Baltic Sea Region**

- OBJECTIVE: Aims to support integrated territorial development in the Baltic Sea region. Projects have to involve at least three different countries from the area.
- TYPE: Grant
- SUM: Project budgets range between €1,5 and 4,5 million for seven or more partners working for two or three years. Co-financing is up to 75% for Scandinavian partners.


National programs Open calls

EU and national funding programs which could support subsequent work on realizing green shipping corridors

BordstromTech (German Federal Ministry for Transport and Digital Infrastructure)

- Market activation of alternative technologies for the environmentally friendly onboard power supply and mobile shore-side power supply of seagoing and inland navigation vessels
- Deadline: 30 September 2022

- With support from this programs, you can carry out projects that develop and test a technology, system or method to bring it to market. EUDP can provide grants for the development and / or demonstration of all energy technologies that can contribute to achieving the Danish energy policy goals of a 70% reduction in CO2 equivalent emissions by 2030 and climate neutrality by 2050.
- Targeted phase: R&D and demonstration
- Grants: 0.03 15M Euro
- Deadline: open on continuous basis, deadline two times a year March and September

- The purpose of The Maritime Fund is to strengthen and develop the shipping and ship building industries with the aim of creating new jobs and strengthening the companies in the industry.
- Targeted phase: R&D
- Grants: 0.07 0.3M Euro
- Deadline: open on continuous basis, deadline four times a year Jan, April, Aug and Oct.

