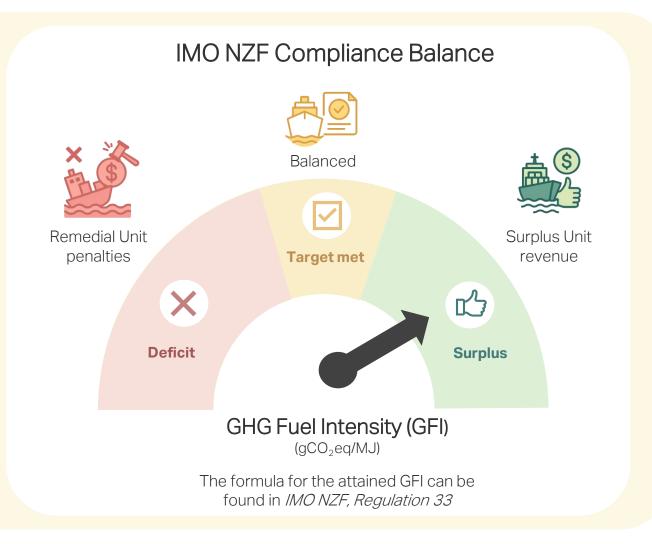
Figures from Countdown Explainer: How IMO LCA Guidelines work in the NZF

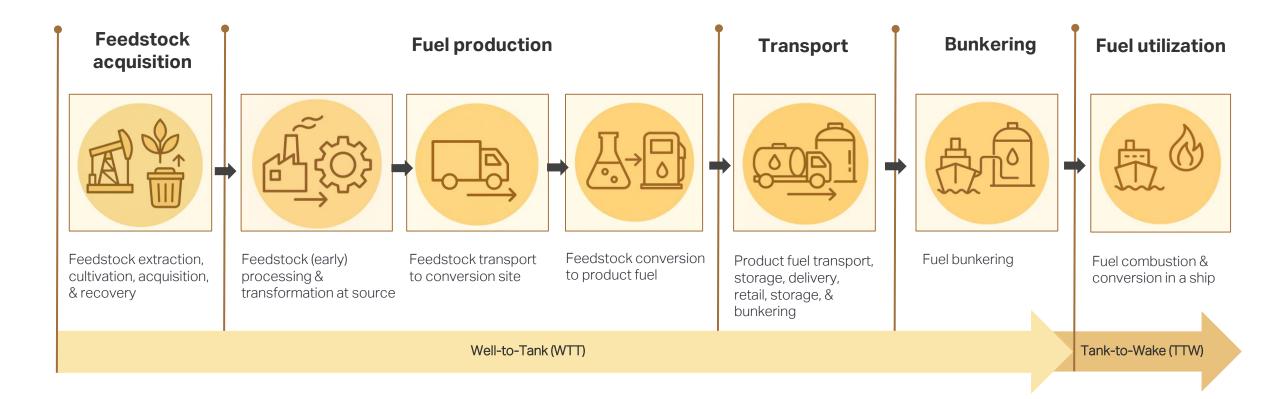
Countdown to IMO NZF 2025



IMO Net-Zero Framework

IMO LCA Guidelines

2024 LCA Guidelines are found in Resolution MEPC.391(81) Methods to calculate emission factors



Overview of the key elements in the 2024 LCA Guidelines

Scope	Full life cycle emissions including upstream (WTT) and use onboard (TTW).	
Well-to-Tank (WTT) coverage	Emissions from fuel/feedstock sourcing, production, conversion, transport, and bunkering.	
Tank-to-Wake (TTW) coverage	Emissions resulting from fuel utilization onboard (e.g., combustion), including potential leaks (fugitive emissions and slip), when relevant for the GHG assessment.	
Well-to-Wake (WTW) coverage	Sum of the WTT and TTW emissions: full life cycle GHG emissions for a given fuel from sourcing of feedstock to the fuel use onboard a vessel in an energy converter.	
Emissions covered	CO ₂ , CH ₄ , N ₂ O	
System boundaries	Feedstock sourcing, feedstock transport, fuel production, fuel conversion, fuel transport, fuel distribution, fuel bunkering, and onboard use (fuel combustion).	
Methodological approach	Attributional LCA. Quantification per segment to the overall GHG intensity of the final fuel or energy product. Expansion of the boundaries can be considered on a case-by-case basis.	
Life cycle stages	1. Feedstock extraction/cultivation/acquisition/recovery; 2. Feedstock (early) processing/ transformation at source; 3. Feedstock transport to conversion site; 4. Feedstock conversion to product fuel; 5. Product fuel transport/storage/delivery/retail storage/bunkering; and 6. Fuel utilization onboard a ship.	
Functional unit	Grams CO_2 equivalent per megajoule of fuel delivered to the ship (g CO_2 eq/MJ).	

System boundaries of the LCA Guidelines

Timeline for default emission factor review and approval

Adapted from MEPC ES 2/3

	2025	2026		2027	2028	
IMO workstreams	MEPC ES.2 / ISWG- GHG 20	MEPC 84 (May)	MEPC 85 (November)	MEPC 86 (Q2)	MEPC 87 (Q2)	MEPC 88 (Q4)
Development of default GHG emission factors	Review and recommendation of proposed default emission factors by GESAMP-LCA WG for approval by the Committee.					
Default emission factor approval		1 st set approval	2 nd set approval	3 rd set approval	4 th set approval	5 th set approval
арр. от а						

GHG fuel intensity calculation methodology

Example with heavy fuel oil (HFO)

Inputs

Heavy fuel oil (HFO) with very low sulfur

		WTT	TTW		
Fuel Type	LCV (MJ/g)	(CO ₂ eq/MJ)	C _f CO ₂ (gCO ₂ /gfuel)	C _f CH ₄ (gCH ₄ /g fuel)	C _f N ₂ O (gN ₂ O/g fuel)
HFO (0.10 < S ≤ 0.50%)	0.0402	16.8	3.114	0.00005	0.00018

Values from the 2024 IMO LCA Guidelines MEPC.391(81) Appendix 2

Global Warming Potential (GWP)

GHG	TTW GWP100	
CO ₂	1	
CH ₄	28	
N ₂ O	265	

GWP is a metric expressing the climate impact of non-CO₂ gases relative to CO₂ over a 100-year period. Values are from the 2024 LCA Guidelines.

MEPC.391(81) referencing IPCC AR5 report

Calculation

Tank-to-Wake (TTW)

$$\begin{aligned} & \mathsf{GHG}_{\mathsf{TTW}} \!=\! \left(1 - \! \tfrac{1}{100} \! \left(\, \mathsf{C}_{\mathsf{ship_ship}} + \mathsf{C}_{\mathsf{fug}} \, \right) \, \right) \times \left(\mathsf{GWP}_{\mathsf{CO2}} \! \times \mathsf{C}_{\mathsf{f}} \mathsf{CO}_2 + \mathsf{GWP}_{\mathsf{CH4}} \! \times \mathsf{C}_{\mathsf{f}} \mathsf{CH}_4 + \mathsf{GWP}_{\mathsf{N2O}} \! \times \mathsf{C}_{\mathsf{f}} \mathsf{N_2O} \right) \\ & \mathsf{C}_{\mathsf{f}} \mathsf{N_2O} \right) + \left(\, \tfrac{1}{100} \, \left(\, \mathsf{C}_{\mathsf{ship_ship}} + \mathsf{C}_{\mathsf{fug}} \, \right) \times \mathsf{C}_{\mathsf{sfx}} \times \mathsf{GWP}_{\mathsf{fuelx}} \right) - \mathsf{S}_{\mathsf{Fc}} \times \mathsf{e}_{\mathsf{c}} - \mathsf{S}_{\mathsf{Fccu}} \times \mathsf{e}_{\mathsf{ccu}} - \mathsf{e}_{\mathsf{occs}} \end{aligned}$$

With
$$C_{\text{slip_ship}}$$
, C_{fug} , S_{Fc} , e_{c} , S_{Fccu} , e_{ccu} , e_{occs} , C_{sfx} , $GWP_{\text{fuelx}} = 0$

$$\leftrightarrow$$
 GHG_{TTW} = (GWP_{CO2} x C_fCO₂) + (GWP_{CH4} x C_fCH₄) + (GWP0 for HFO_{N2O} x C_fN₂O)

$$\Rightarrow$$
 GHG_{TTW} = (1 x 3.11) + (28 x 0.00005) + (265 x 0.00018) = 3.16 gCO₂eq/g fuel

$$\Leftrightarrow$$
 GHG_{TTW} = $\frac{\text{GHG}_{\text{TTW}}}{\text{LCV}} = \frac{3.16}{0.0402} = 78.68 \,\text{gCO}_2\text{eq/MJ}$

Well-to-Wake (WTW)

Adding the well-to-tank (WTT) result to the TTW value gives the full WTW GHG emission intensity:

$$GHG_{WTW} = GHG_{WTT} + GHG_{TTW} = 78.68 + 16.8$$

$$\rightarrow$$
 GHG_{WTW} = 95.48 gCO₂eq/MJ

Subscribe to our <u>Countdown newsletter</u> on climate policy and the maritime sector published in a limited series format, focused on a specific policy.

The current series, **Countdown to IMO NZF**, is looks at the historic regulations coming out of the IMO. Find more on the IMO NZF and read previous editions on the Net-Zero Framework homepage.

Disclaimer: The information provided in this newsletter by Fonden Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping is based on selected public sources believed to be reliable but without a guarantee of accuracy, completeness or fitness for a particular purpose, and is subject to change without notice. This should not be construed as investment, legal, tax, or accounting advice. Readers are encouraged to make their own judgments and seek professional advice when needed. This information is provided without warranty or representation of any kind, express or implied. While every effort has been made to ensure the accuracy of the content, Fonden Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping shall not be held liable for any errors or omissions in the content, nor for any loss or damage arising from the use of it.

